Introduction

FOREWORD

This document will be reviewed and updated by the Defense Information Systems Agency (DISA) as
required to remain current with technology and program requirements. This document supersedes all
previous GCCS and DII Integration documents.

Changesto this document must be approved by DISA, but comments and recommendations for change
may be forwarded for review and incorporation to:

DISA DIl COE Chief Engineer
Attention: Mr. Dan Test

Department of Defense

Defense Information Systems Agency
45335 Vintage Park Plaza

Sterling, VA 20166-6701

Office Td: (703) 735-8736
email: tesd@ncr.disa.mil

Thefollowing are registered trademarks of the Microsoft Corporation: Windows, Win32, Win32s,
Windows NT, Windows 95, and MS-DOS. TrueTypeis aregistered trademark of Apple Computer, Inc.
SoundBlaster is atrademark of Creative Labs, Inc. OS2 and PS/2 are registered trademarks of | nternational
Business Machines Corporation. Unicode isatrademark of Unicode, Inc. PostScript is a trademark of
Adobe Systems, Inc. UNIX isatrademark of X/Open Company Ltd.

DIl COE I&RTS: Rev 3.0 July 1997 1

Introduction

Executive Summary

This document describes the technical requirements for using the Defense Information Infrastructure (DII)
Common Operating Environment (COE) to build and integrate systems. It provides implementation details
that describe, from a software devel opment perspective, the following:

* the COE approach to software reuse,

» the COE runtime execution environment,

* thedefinition and requirementsfor achieving DIl compliance,

» the process for automated software integration into the COE or into a COE-based system, and

» theprocess for eectronically submitting/retrieving software components to/from the DIl repository.

DIl complianceis closely associated with interoperability, and for thisreason systems are increasingly
being measured by the degree to which they meet requirements described in this document. OSD hasissued
adirective that all new C4l systems and other systems which interface to C4l systems shall bein
compliance with the Joint Technical Architecture (JTA). The JTA in turn mandates use of the DIl COE.
The JTA is being expanded in scope to address weapons systems as well.

Background

The DIl COE concept is best described as an ar chitectur e that is fully compliant with the DOD Technical
Architecture for Information Management (TAFIM), Volume 3, an appr oach for building interoperable
systems, ar eference implementation containing a collection of reusable softwar e components, a
softwar e infrastr uctur e for supporting mission-area applications, and a set of guidelines, standar ds, and
specifications. The guiddines, standards, and specifications describe how to reuse existing software and
how to properly build new software so that integration is seamless and, to alarge extent, automated. The
JTA replaces the standards guidance in the TAFIM as per OSD directive dated 22 Aug 96. In the absence of
a Joint Systems Architecture, the JTA currently mandates the use of the DIl COE (afundamental JSA
component) in Section 2.2. The DIl COE will be evolved as necessary to maintain compliance with
mandated standards found in future JTA updates.

The COE is primarily concerned with the executabl e environment of a system and is specifically designed
to be programming-language neutral. It does not state a preference of one language over another, but leaves
the sdlection of a programming language to higher-level standards profile guidance and programmatic
considerations. Any statementsin the 1&RTS which appear to state or imply a preference for one language
over another are unintentional.

The COE is a “plug and play” open architecture. The current reference implementation is designed around
a client/server model. The COEnst a system; it is oundation for building an open system.

Functionality is easily added to or removed from the target system in small manageable units, called
segments. Structuring the software into segments is a powerful concept that allows considerable flexibility
in configuring the system to meet specific mission needs or to minimize hardware requirements for an
operational site. Site personnel perform field updates by replacing affected segments through use of a
simple, consistent, graphically oriented user interface.

The DII COE was initially based on work from the C4l arena, but it has been expanded to encompass a
range of other functional areas including logistics, transportation, base support, personnel, health affairs,

and finance. Three representative systems that use the DIl COE are the Global Command and Control
System (GCCS), the Global Combat Support System (GCSS), and the Electronic Commerce Processing
Node (ECPN) system. All three systems use the same infrastructure and integration approach, and the same

DIl COE I&RTS: Rev 3.0 July 1997 2

Introduction

COE components for functions that are common between the systems. GCCSis a C4l system with two
main objectives. the replacement of the World-Wide Military Command and Control System (WWMCCS)
and the implementation of the C4l For the Warrior concept. GCCSisaready fielded at anumber of
operational CINCs and in calendar year 1996, achieved the first objective of replacing all WWMCCS
systems. GCSSis under development and istargeted for the warfighting support functions (logistics,
transportation, etc.) to provide a system that is fully interoperable with the warfighter C4l system.
Implemented to its fullest potential, GCSS will provide both warfighter support to include reachback from
deployed commanders into the CONUS sustaining base infrastructure, and cross-functional integration on a
single platform. ECPN is aso under devel opment and isto provide the foundation for paperless exchange
of businessinformation, including funds transfer, using electronic media. A number of other programs that
arein the early stages of devel opment have committed to using the DIl COE, and several programs have
committed to migrating their existing systems to the DIl COE.

The DIl COE represents a departure from traditional devel opment programs. It emphasizes incremental

development and fielding to reduce the time required to put new functionality into the hands of the warrior,

while not sacrificing quality nor incurring unreasonable program risk or cost. This development approach is
sometimes described as a “build a little - test a little - field a lot” philosophy. It is a process of continually
evolving a stable baseline to take advantage of new technologies as they mature and to introduce new
capabilities. But the changes are done one step at a time so that the warfighters always have a stable
baseline product while changes between successive releases are perceived as slight. This approach allows
program managers the option of taking advantage of recently developed functions to rapidly introduce new
capabilities to the field, or to synchronize with COE development at various checkpoints for those
environments where incremental upgrades are not readily acceptable to the customer community.

DISA maintains the COE software and software from its own COE-based systems (e.g., GCCS, GCSS,
ECPN) in an online configuration management repository c8IBdS (Software Distribution

Management System). This approach decreases the development cycle by allowing develspivs to r
software updates, or to submit new software segments, electronically. With appropriate security measures,
installation costs are also reduced because operational platforms may be updated electronically across
SIPRNET or other LAN networks.

New Features

This new release represents an upgrade to the previous version of this document, the IDiégE&n
and Runtime Specification (I&RTS), version 2.0. It is intended to amplify and clarify sections that were
previously unclear or incomplete, and to present a set of new capalilitisgew version is completely
backwards compatible with the previous release of this document. There isno resultant reduction in the
compliance of systemsthat have already been migrated under the previous version of this document,
although Appendix B has been reworked to make compliance checking easier.

It should also be noted that th&RTS document contents and version number are entirely independent of
the DIl COE software release contents and version number. There is no direct correspondence between a
particular version number of th& RTS and the capabilities available in a version of the DIl COE with the
same version number. Th&RTS document describes the technical requirements for using the DIl COE

and therefore addresses the current and future capabilities of the DIl COE. Portiori& BThare

always ahead of the DIl COE software, addressing future capabilities and technological advances, so that
developers can see where the DIl COE is headed.

Several new capabilities are incorporated into this release including:

* Guidance for using DCE (Distributed Computing Environment)

* Extensions for World-Wide-Web (WWW) applications within the COE

« Database application support through the Shared Data Environment (SHADE)
* Inclusion of an NT-based COE for PCs

» Additional tools for managing large-scale LAN environments.

DIl COE I&RTS: Rev 3.0 July 1997 3

Introduction

Conclusion

The principles described in this document are not unique to DISA programs. They can be readily applied to
many application areas. The specific software components selected for inclusion in the COE determine the
mission areathat the COE can address. The concepts herein represent the culmination of open systems
evolutionary devel opment from both industry and government. Most notably, the Army Common Software
(CS) and the Navy Joint Maritime Command Information System (IMCIS) COE efforts have greatly
influenced DIl COE devel opment.

The DIl COE architecture is an innovative framework for designing and building military systems. Because
it reuses software contributed by mature programs, it utilizes field-proven software for common warrior
functions. The engineering procedures for adding new capabilities and integrating systems are mature, and
have been used for several Navy IMCIS releases aswell asin al production GCCS releases. The end result
isastrategy for fielding systems with increased interoperability, reduced devel opment time, increased
operational capability, minimized technical obsolescence, minimal training requirements, and minimized
life-cycle costs.

Thispageisintentionally blank.

I ntroduction

The Command, Control, Communication, Computer, and Intelligence (C4l) For the Warrior (C4IFTW)
vision has been stated as follows:

The Warrior needs a fused, real-time, true-picture of the battlespace and the ability to
order, respond, and coordinate vertically and horizontally to the degree necessary to
prosecute the mission in that battlespace.

This broad visionary statement demongtrates that an unprecedented degree of integration and
interoperahility isrequired of Department of Defense (DOD) systems, both for legacy systems and for
systems that are under construction. The Defense Information Infrastructure (DI1) Common Operating
Environment (COE) isthe key to achieving thisvision.

The DIl COE! originated with a simple observation about command and control systems: certain functions
(mapping, track management, communication interfaces, etc.) are so fundamental that they are required for
virtually every command and control system. Y et these functions are built over and over againin

! The acronyms “DIl COE” and “COE” are used interchangeably throughout this document. Other COEs
exist (such as the Joint Maritime Information System (JMCIS) COE) which are very similar in scope or
implementation with the DIl COE. To avoid confusion, unless otherwise indicated, “COE” always refers to
the DISA DIl COE.

DIl COE I&RTS: Rev 3.0 July 1997 4

Introduction

incompatible ways even when the requirements are the same, or vary only slightly, between systems. If
these common functions could be extracted, implemented as a set of extensible low-level building blocks,
and made readily avail able to system designers, development schedul es could be accelerated and
substantial savings could be achieved through software reuse. Moreover, interoperability would be
significantly improved because common software is used across systems for common functions, and the
functional capability only needs to be built correctly once rather than over and over again for each project.

This observation led to the devel opment of the DIl COE. Although its roots arein the C4l arena, the DI
COE and its principles are not unique to C4l. The DIl COE has been expanded to encompass a range of
other functional areas including logistics, transportation, base support, personnel, heath affairs, and
finance. All new Defense Information Systems Agency (DISA) systems are being built using the DIl COE
while existing DISA systems are being migrated to use the DIl COE. The Office of the Secretary of
Defense (OSD) hasrecently issued a directive?’ that requires JTA compliance and, indirectly, use the DI
COE.

A significant aspect of the COE challengeisto strategically position the architecture so as to be able to take
advantage of technological advances. At the same time, the system must not sacrifice quality, stability, or
functionality already in the hands of the warrior. In kegping with current DOD trends, the COE emphasizes
use of commercial products and standards where applicabl e to |everage investments made by commercia
industry.

2 OSD Directive dated 22 August 1996 (Subject: Implementation of the DOD Joint Technical
Architecture). The directive states that al new C4l systems and other systems which interface to C4l
systems shall be in compliance with the JTA. The JTA in turn mandates use of the DIl COE. The JTA is
being expanded in scope to address weapons systems as well.

DIl COE I&RTS: Rev 3.0 July 1997 5

A Brief History of the DIl COE

1.1 A Brief History of the DIl COE

Initial DIl COE development was driven by a near-term requirement to build a suitable WWMCCS

replacement. To achieve the near-term WWM CCS replacement objective, technical experts and program

managers from the Services, intelligence community, Defense Mapping Agency (DMA), and other

interested agencies met for several months beginning in the fall of 1993. Participants proposed candidate

systems as a possible starting point for a COE architecture or as a suitable candidate for providing

capabilities to meet WWM CCS replacement requirements. None of the candidate systems met all

requirements, but it was clear that a combination of the “best” from several systems could produce a
near-term system that would be suitable for WWMCCS replacement. Moreover, an infrastructure could be
put into place and a migration strategy defined to preserve legacy systems until migration to the intended
architecture could be realized.

The cornerstone architectural concept jointly developed during that series of meetings was the GCCS COE.
This initial COE was limited in scope to address the immediate C4l problem (i.e., WWMCCS

replacement), but its principles, structure, and foundation deliberately went far beyond just the C4l mission
domain. The GCCS COE was composed of software contributed from candidate systems evaluated by this
original Joint engineering team.

An initial proof-of-concept system, GCCS 1.0, was installed in early 1994 at one site to validate the
approach and to receive early feedback. GCCS 1.1 followed in the sumi®&4adnd was the first

attempt to integrate software from Service programs as initial GCCS COE components. GCCS 1.1 included
mission applications from other programs operating in a “federated” mode. That is, the mission
applications were integrated together so as to be able to run on the same hardware without interfering with
each other, but not yet able to effectively share data between applications. GCCS 1.1 was installed and
tested at beta sites and used at certain operational sites to monitor events during the 1994 Haiti crisis.
GCCS 2.0 fielding began in early 1995 at a number of operational sites. GCCS 2.1 was fielded in mid-1995
and by mid-1996 had soessfully replaced WWMCCS. A prototype version of GCCS 2.2 was the basis for
Joint Warrior Interoperability Demonstration (JWID) 95 and a refinement of it was the basis for JWID 96.
Another GCCS 2.2 enhancement was placed in theater to support Bosnia operations and for contingency
planning when tensions in the Gulf area increased in mid-1996.

In mid-1995 technical experts met under DISA guidance to expand the GCCS COE into the DIl COE. The
result is a COE that contains all of the original GCCS COE functionality and that is backwards compatible.
The DIl COE was expanded to address other mission domains. Much of the original software has been
updated to take advantage of further technological advances and Commercial Off-the-Shelf (COTS)
software has replaced some of the original Government Off-the-Shelf (GOTS) components. From this
historical perspective, the GCCS COE can be viewed as a subset of the much larger DIl COE. Although
GCCS succeeded in replacing the aged WWMCCS, it is important to realize that GCCS is far more than
just a WWMCCS replacement.

The DII COE has its roots in command and control, but the principles and implementation described in this
document are not unique to, nor limited to, command and control or logistics applications but are readily
applicable to many other application areas. The specific software components selected for inclusion in the
COE determine the mission areas that the COE can address.

Backwards compatibility is a fundamental tenet of the COE and significant effort is expended to preserve
legacy investments. Systems which migrate to the DIl COE now are protected by backwards compatibility
as future COE versions are released. Upgrading from one COE version to the next is generally no more
difficult than upgrading from one COTS product version to the next.

DIl COE I&RTS: Rev 3.0 July 1997 6

The DIl COE Concept

1.2 The DIl COE Concept

The DIl COE concept isanew approach that is much broader in scope than software reuse. Most software
reuse approaches to date have proven less than satisfactory. Reuse approaches have generally emphasized
the development of a large software repository from which designers may pick and choose modules or elect
to rebuild modules from scratch. It is not sufficient to have alarge repository, and too much freedom of
choice leads to interoperability problems and duplication of effort. Thisrapidly negates the advantages of
software reuse.

Software reuse strategies have also ignored the importance of datareuse. The approach has traditionally
been to encapsulate datainto areational database from which applications may retrieve the data according
to their own view (i.e., schema). While this approach was a tremendous advance, it fell short of the goal of
providing truly interoperable systemsin the Joint arena. What isrequired is an approach that promotes data
sharing within systems and between systems. The approach must also recognize and resolve the i ssues of
duplicative data, inconsistencies in the data, and data replication. SHADE isthe data reuse strategy for the
DIl COE.

The DIl COE emphasizes both software reuse and data reuse and interoperahility for both dataand
software. But its principles are more far reaching and innovative. The COE concept encompasses.

e an architecture and approach for building interoperable systems,

e an environment for sharing data between applications and systems,

* aninfrastructure for supporting mission-area applications,

e arigorous definition of the runtime execution environment,

» areference implementation on which systems can be built,

e acollection of reusable software components and data,

 arigorous set of requirements for achieving DII® compliance,

* an automated toolset for enforcing COE principles and measuring DIl compliance,
e an automated process for software integration,

e an approach and methodology for software and data reuse,

e asat of Application Program Interfaces (APIs) for accessing COE components, and
e an dectronic process for submitting/retrieving software and data to/from the DIl repository.

Thisdocument is an engineering specification that describes how modules must interact in the target
system. System architects and software devel opers retain freedom in building the system, but runtime
environmental conflicts and data conflicts are identified and resolved through automated tools that enforce
COE principles. An important side effect isthat traditional integration tasks largely become the
responsibility of the devel oper. Developers arerequired to integrate and test their software with the COE
prior to delivering it to the government. This s mplifies integration because those who best understand the
software design (the original developers) perform it, it reduces the cost because integration is performed
earlier and a alower level in the process, and it alows the government to concentrate on validation instead
of integration.

The COE must be understood as a multi-faceted concept. Understanding how the many facetsinteract is
important to appreciate the scope and power of the DIl COE and to avoid confusion in understanding COE
materia. The next subsection deals with four specific facets in more detail:

e the COE asasystem foundation,
e the COE asan architecture,

® The term “DIl compliance” is preferred instead of “COE compliance” and is used through &R

The compliance concept and approach has not changed, but compliance is measured for segments within
the COE as well as mission-application segments that lie outside the COE. Therefore, “DIl compliance” is
more descriptive and correct than “COE compliance.”

DIl COE I&RTS: Rev 3.0 July 1997 7

The DIl COE Concept

« the COE asareference implementation, and
e the COE asan implementation strategy.

Failure to understand these facets will lead to confusion and non-compliant systems.

1.2.1 The DIl COE asa System Foundation

The DIl COE isnot asystem,; it isafoundation for building systems. Figure 0-1 isa simplified diagram that
shows how the DIl COE serves as a foundation for building multiple systems. Details such as specific COE
components, databases, and the internal structure of the COE have been omitted for clarity. Chapter 2
provides thisleve of information and describes the COE in much more detail. The purpose of Figure 0-1is
to introduce the concept.

The shaded box in Figure 0-1 shows two types of reusable software: the operating system and COE
components. For the present discussion, it is sufficient to note that COE components are accessed through
APIs and that the COE components form the architectural backbone of the target system. The APl isthe
means through which a system permits a programmer to devel op applications through interaction with the
underlying COE. Standards (POS X [Portable Operating System for Information Exchange] in the diagram)
and specifications (TAFIM [Technical Architecture Framework for Information Management], JTA [Joint
Technical Architecture], I&RTS[Integration and Runtime Specification], and User Interface Specification
[UI] inthe diagram) dictate how COE components are to be built and how external components must be
built to be compliant with the COE architecture.

Building atarget system includes combining COE components with mission-specific software. The COE
infrastructure manages the flow of data through the system, both internally and externally. Mission-specific
softwareis mostly concerned with requesting data from the COE and then presenting it in aformthat is
most meaningful to the operator (e.g., asapie chart, in tabular form, as a graph). The COE provides the
necessary primitives for such data whether stored locally or remotely across a Local Area Network (LAN)
or Wide Area Network (WAN). This frees the system designer to concentrate on meaningful data
presentation and not on the mechanics of data manipulation, network communications, database storage,
etc.

Thereis only one COE regardless of the target system. The COE isa set of building blocks. System
designers sdlect those building blocks (e.g., COE components) required for their mission application, while
excluding building blocks that are not required. Each derived system uses the same set of APIs to access
common COE components, the same approach to integration, and the same set of tools for enforcing COE
principles. For common functions (e.g., communications interfaces, dataflow management), each target
system uses precisely the same COE software components. Compliant systems do not implement their own
versions of algorithms within the COE because this will rapidly lead to interoperability problems as
algorithms are interpreted differently or because systems fail to upgrade algorithms at the sametime. This
approach to software reuse significantly reduces interoperability problems because if the same softwareis
used, it isnot possible to have two systems that interpret or implement standards differently.

DIl COE I&RTS: Rev 3.0 July 1997 8

The DIl COE Concept

<« COEBasedSystens —— p»

GCCS GCSS ECPN Other
* DIl COE
o Standards Standard Application Program Interfaces
©
Z *|&RTS COE Components
‘5‘3 UIS
o *POSI X
re! TAFIM
ﬁ JTA
D
04 _ .
+ Operating System Services

H/W Platform

Figure0-1: DIl COE and COE-Based Systems

1.2.2 The DIl COE as an Architecture

The DII COE is a “plug and play” open architecture designed around a client/server model. Functionality is
easily added to or removed from the target system in small manageable unitsegaiets. Segments are
defined in terms of functions that are meaningful to operators, not in terms of internal software structure.
Structuring the system into segments in this manner allows flexibility in configuring the system to meet
specific mission needs or to minimize hardware requirements for an operational site. Site personnel
perform field updates by replacing affected segments through use of a simple, consistent, graphically-
oriented user interface.

The DIl COE model is analogous to the Microsoft WindBwpsradigm. The ideais to provide a standard
environment, a set of standard off-the-shelf components, and a set of programming standards that describe

how to add new functionality to the environment. The Windows paradigm is one of “federation of systems”
in that properly designed applications can coexist and operate in the same environment. But simple
coexistence is not enough. It must be possible for applications to share data. The DIl COE extends the
Windows paradigm to allow for true “integration of systems” in that mission applications share data at the
server level.

DIl COE I&RTS: Rev 3.0 July 1997 9

The DIl COE Concept

Federation versus integration is an important architectural distinction. However, integration isnot possible
without strict standards that describe how to properly build componentsto add to the system. This applies
equally to software functions and data. This document and other related documents detail the technical
requirements for a well-behaved, DI1-compliant application. The COE provides automated tools to measure
compliance and to pinpoint problem areas. A useful side effect of thetools and proceduresis that software
integration is largely an automated process, thus significantly reducing devel opment time while
automatically detecting potential integration and runtime problem areas.

More precisaly, to a devel oper the DIl COE includes each of the following:

« An Architecture®: A precisdy defined TAFIM and JTA-compliant, client/server architecture for how
system components will interact and fit together and a definition of the system-level interface to COE
components.

* A Runtime Environment: A standard runtime operating environment that includes “look and feel,”
operating system, and windowing environment standards. Since no single runtime environment is
possible in practice, the COE architecture provides facilities for a developer to extend the environment
in such a way as to not conflict with other developers.

« A DataEnvironment: A standard data environment that prescribes the rules whereby applications can
share data with other applications.

* A Reference Implementation: A clearly defined set of already implemented, reusable functions. A set
of reusable software and data is a cornerstone of the DIl COE product.

A Setof APIs: A collection of interfaces for accessing COE components. Thus, the COE is a set of
building blocks in the same sense that X Windows and Motif are building blocks for creating an
application’'s Graphical User Interface (GUI).

* A Set of Standardsand Specifications: A set of rules that describe how to use the COE, how to
construct segments, how to create a GUI, etc.

* A Development Methodology: A process for developing, integrating, and distributing the system and
a process for sharing components with other developers. The COE emphasizes and encourages
incremental development that has the advantage of quickly producing usable functionality.

1.2.3 The DIl COE as a Reference | mplementation

The COE necessarily includes an implementation of the components defined to be in the COE. The
reference implementation is the key to reusability and interoperability. Use of the reference implementation
provided is required to assure interoperability and is therefore a fundamental requirement for DIl
compliance. The reference implementation may change over time to take advantage of new technologies or
to fix problem reports, but incremental improvements are introduced while preserving backwards
compatibility.

The termreference implementation should be properly understood in the context of the DIl COE. It means
that a single body of code has been used as a starting point for implementing the COE on a specific

* The JTA describes three types of architectures: operational, technical, and system. The DIl COE is
relevant to all three types but does not and cannot provide a complete architectural definition for all three
types. For example, the operational architecture also includes consideration of the command echelon and
reporting structure. This is dictated by policy and is thus outside the scope of the COE. The DIl COE is
limited to addressing those aspects of an architecture that can be implemented in hardware and software as
dictated by higher level standards, concept of operations, and service doctrine.

DIl COE I&RTS: Rev 3.0 July 1997 10

The DIl COE Concept

hardware platform and operating system. The only differences in the actual executable binary code are
those that arise purely as aresult of porting from one platform to another. The algorithms and the way the
algorithms areimplemented are identical from platform to platform.

1.2.4 The DIl COE asan Implementation Strategy

The COE is aso an evolutionary acquisition and implementation strategy. Thisrepresents a departure from

traditiona devel opment programs. It emphasizesincremental devel opment and fielding to reduce thetime

required to put new functionality into the hands of the warrior, while not sacrificing quality nor incurring
unreasonable program risk or cost. This approach is sometimes described as a “build a little - test a little -
field a lot” philosophy. It is a process of continually evolving a stable baseline to take advantage of new
technologies as they mature and to introduce new capabilities. But the changes are done one step at a time
so that the warfighters always have a stable baseline product while changes between successive releases are
perceived as slight. Evolutionary development has become a practical necessity for many development
programs because the traditional development cycle time is longer than the technical obsolescence cycle
time. This approach allows program managers the option of taking advantagenfyrdeveloped

functions to rapidly introduce new capabilities to the field, or of synchronizing with COE development at
various points for those situations where incremental upgrades are not readily acceptable to the customer
community.

The COE implementation strategy is carefully structured to protect functionality contained in legacy
systems so that over time they can migrate to full COE utilization. Legacy systems must use only “public”
APIs and migrate away from use of “private” APIs. Public APIs are those interfaces to the COE that will be
supported for the life cycle of the COE. Private APIs are those interfaces that are supported for a short
period of time to allow legacy systems to migrate from unsanctioned to sanctioned APIs. All new
development is required to use only public APIs and use of any other APIs results in a non-DIl compliant
segment.

From the perspective of a system developer, whether developing a new application or migrating an existing
one, the COE is an open client/server architecture that offers a collection of services and already-built
modules for mission applications. Thus, the developer's task is to assemble and cuekistiizg

components from the COE while developing only those unique components that are peculiar to particular
mission’s requirements. These additional mission-unique components must still adhere to the standards
specified in theTA and this document. In many if not most cases, this amounts to adding new “pull-down
menu entries and icons.”

® Customization is achieved in two ways: by omitting COE components that are not required and by
configuring operational characteristics of the selected COE components. Customizatioot doesn the

ability to change the functional operation of the component (a) outside the configurable items provided by
the component or (b) outside the facilities provided by the component’s APIs. When customizing the COE
is discussed in this document, it must be understood in this context as a way of tailoring the COE to meet a
specific mission need.

DIl COE I&RTS: Rev 3.0 July 1997 11

L essons L ear ned

1.3 Lessons L earned

The COE as the embodiment of an architectural concept offers the opportunity to leverage a mature,
proven, field tested software base for awide variety of applications for the services, agencies, and Joint
community. As budgets shrink and as budgetary priorities shift, program managers require the ability to
continue to respond rapidly with systems that satisfy the information needs of United States and Allied
Armed Forces. The COE implementation strategy is a significant advancement in fulfilling this ongoing
need.

Examination of state-of-the-art development in light of these redlities resultsin a set of fundamental tenets
that greatly influence the history, future, and direction of the DIl COE. An explanation of these tenetsis
useful in understanding the COE asawhole.

* Pre-COE practiceslead to devel opment and redevel opment of the same functionality across systems.
Redevel opment is frequently necessary because of technological changes as algorithms areimproved
or as hardware becomes faster and cheaper. However, development cost tends to be high due to alack
of coordination between programs that share common requirements.

« Duplication of functionality within the same systemis more expensive than avoiding duplication. Lack
of coordination between program devel opersis a fundamental cause for duplicative functions, but an
additional factor isthat reuse libraries are not commonly available. Theimpact of duplication is more
than just program costs. When functionality is duplicated, system users are often given conflicting
information even in the presence of identical data because designerstook dightly different approaches
to solving the same problems or made dightly different assumptions.

 Interoperability is not achievable through “paper” standards alSr&andards are necessary, but not
sufficient,’ to guarantee interoperability. Interoperability problems are generally not caused by the
standards chosen but by differing or incorrect interpretations of standards. System designers often
choose different standards with which to comply, but even when the gandards are the same, different
interpretations of the standards can greatly change the way the resulting system operates. The COE
emphasizes use of industry and government standards, but relies even more on automated ways of
measuring and evaluating compliance, and thus quantitatively evaluating program risk. The only
practical way to achieve interoperability isto use exactly the same software, written to appropriate
standards, for common functions across applications. For example, the COE contains acommon
tactical track correlator to ensurethat all users see the sametactical picture. The answer produced by
the correlator may be incorrect but a problem correction in one place then becomes effective for al
users.

« Pre-COE practices lead to exponential growth in testing and associated developmehtacksis
commonality and modularity in system building blocks means that thereis much duplication of effort
in testing basic functionality and testing in one section of a system is often tightly coupled to testing in
another section. This complicates and extends the certification process. Configuration management,
system integration, and long-term maintenance are al so more complex and costly when thereisalack
of commonality and modularity in system building blocks.

« The importance of training is usually underestimated and the magnitude of the training problem is

increasing An operator is often expected to use multiple systems which behave completely differently,

® This statement is not meant to minimize the importance of standards, but to state that they alone are not
sufficient to solve interoperability problems. The situation would be far more desperate in the absence of
standards.

’ The solution provided by the COE is to define specifications and a reference implementation of a
standard. For example, in the user interface area, Motif is the standard selected for UNIX platforms and the
DIl User Interface Specificatiors the specification written to be compliant with Motif, but tailored for the
particular mission domain.

DIl COE I&RTS: Rev 3.0 July 1997 12

L essons L ear ned

are equaly complex with their own subtleties, and which give dightly different answers. Operator

turnover israpidly reaching the point where the time it takes to train an operator isa significant portion

of thetime that the operator is assigned to his current tour of duty. Training is greatly reduced by a
consistent “look and feel” and by the ability to present to the operator only those functions useful for
the task at hand.

« Don't reinvent the wheel. If a component already exists, it should probably be utilized even if the
component is not the optimum solution. Almost any module can be improved but that is rarely the
issue. Reuse of existing and proven software allows focus of attention on mission uniqueness. Rather
than concentrating scarce development resources on recreating building blocks, the resources can be
more appropriately applied to configuration and development of functionality that is not already
available.

« Utilize existing commercial standards, specifications, and products whenever feasible. The
commercial marketplace generally moves at a faster pace than the military marketplace and
advancements are generally available at a more rapid rate. Use of commercial products has several
advantages. Using already built items lowers production costs. The probability of product
enhancements is increased because the marketplace is larger. The probability of standardization is
increased because a larger customer base drives it.

DIl COE I&RTS: Rev 3.0 July 1997 13

Requirements and Objectives

1.4 Requirements and Objectives
The following requirements apply to the DIl COE:

« TheDII COE will be fully compliant with the JTA®. Standards defined within the JTA promote an open
systems architecture, the benefits of which are assumed to be well known and generally accepted.

* TheDIl COE isintended to be hardware independent and operate on arange of open systems
platforms running under standards-based operating systems. Program-driven requirements, associated
testing costs, and funding will dictate which specific hardware platforms are given priority.

¢ Non-devel opmental items (NDIs), including both COTS and GOTS products, are the preferred
implementation approach.

* The DIl COE is programming-language neutral. It does not state a preference of one language over
another, but leaves the selection of a programming language to higher-level standards profile guidance
and programmatic considerations. Any statementsin the |&RTS which appear to state or imply a
preference for one language over another are unintentional .

COE development is driven by C4IFTW requirements as articulated by the services through the appropriate
DISA Configuration Control Board (CCB) process. Development priorities are established by the CCB
Chair and given to the DIl COE Chief Engineer for implementation.

The broad program drivers for the DIl COE lead to a number of program objectives that include those
stated in the TAFIM, Volume 2:

1. Commonality: Develop a common core of software that will form the foundation for Joint systems,
initialy for C4l and logistics systems.

2. Reusability: Develop a common core of software that ishighly reusable to leverage the investment
aready made in software devel opment across the services and agencies.

3. Standardization: Reduce program devel opment costs through adherence to industry standards. This
includes use of commercially available software components whenever possible.

4. Engineering Base: Through standardization and an open architecture, establish alarge base of trained
software/systems engineers.

5. Training: Reduce operator training costs and improve operator productivity through enforcement of a
uniform human-machine interface, commonality of training documentation, and a consistent “look and
feel.”

6. Interoperability: Increase interoperability through common software and consistent system operation.

7. Scalability: Through use of the segment concept and the COE architectural infrastructure, improve
system scalability so that COE-based systems will operate with the minimum resources required.

8. Portability: Increase portability through use of open systems concepts and standards. This also
promotes vendor independence for both hardware and software.

8 JTA replaces some of the standards guidance in TAEIM as per OSD directive (Subject:
Implementation of the DOD Joint Technical Architecture) dated 22 August 1996. It replaces those
standards for service areas defined within . For those service areas not included in Jia,
guidance in Volume 7 of thBAFIM is to be followed.

DIl COE I&RTS: Rev 3.0 July 1997 14

Requirements and Objectives

9. Security: Improve system security to the extent possible to protect the system from deliberate attack
and prevent unauthorized access to data and applications.

10. Testing: Reduce testing costs because common software can be tested and validated once and then
applied to many applications.

DIl COE I&RTS: Rev 3.0 July 1997

15

Document Scope

1.5 Document Scope

This document describes the technical requirements for building and integrating software components on
top of the DIl COE. It provides implementation details that describe, from a software development
perspective, the following:

» the Common Operating Environment (COE) approach to software reuse,

* theruntime execution environment,

* the Shared Data Environment (SHADE),

» therequirementsfor DIl compliance,

* how to structure components to automate software integration, and

* how to eectronicaly submit/retrieve software components to/from the software repository.

DIl COE I&RTS: Rev 3.0 July 1997

16

Applicable Documents, Standar ds, and Specifications

1.6 Applicable Documents, Standar ds, and Specifications

Thisdocument isonein a series of related documents that define devel opment requirements, system
architecture, engineering tools, and implementation techniques. Many of the documents cited are available
on the World-Wide-Web (WWW), or contact the DISA Configuration Management (CM) office for
information on how to obtain the desired documents.

Because the COE and COE-based systems are ongoing programs, enhancements and additional features are
developed on aregular basis. Documentation updates areregularly released for each of the documents
listed here. Be sureto always refer to the latest version for the documents listed below, and be aware that
many of the documents are being modified and extended to address DIl COE-based systems, not just
GCCSor GCSS.

1

Architectural Design Document for the Defense Information Infrastructure (DI1) Common Operating
Environment (COE), January 1996, DISA Center for Computer Systems Engineering. This
document isthe definitive high-level technical description of the COE. It documentsthe architectural
design produced by the DISA COE Design Working Group. It isuseful for understanding how the
client/server model has been implemented within the DIl COE.

C4I SR Architecture Framework, Cl SA-0000-104-96, Version 1.0, 7 June 1996, C4I SR Integration
Task Force (ITF) Integrated Architectures Panel. This document presents an innovative definition
of levels of interoperability. The DIl COE adopts these levels of interoperability and maps Dl
compliance to interoperability levels.

Defense Information Infrastructure (DI1) Common Operating Environment (COE) Version 3.0
Baseline Specifications, 31 October 1996, DI SA. This document describes the detailed contents of
each COE release and is updated with each subsequent release. It includes the name and version of
each segment in the COE as well as COTS products, their version, and applicable patches.

Defense Information Infrastructure (DI1) Common Operating Environment (COE) System
Requirements Specification, Draft, 1996, | nstitute for Defense Analysis. Service and Agency
requirements for a COE are defined in this document. It isaliving document that is updated as
necessary to reflect ongoing requirements collection.

Defense Information Infrastructure Software Quality Compliance Plan, Draft, 1 January 1996,
DI SA. This document describes a plan for evaluating COE segments from a software quality
perspective. The plan includes static analysis of segment source code to measure complexity,
maintainability, risk, and other standard software metrics.

Department of Defense Joint Technical Architecture, Final Coordination Draft 1.0, 22 August 1996,

Joint Technical Architecture Working Group. The JTA has been mandated by OSD directive for “...

all emerging systems and systems upgradesJTAeapplies to all C4l systems and the interfaces of
other key assets (e.g., weapons systems, sensors, office automation systems, etc.) with C4l systems.
TheJTA also applies to C4l Advanced Concept Technology Demonstrations and other activities that
lead directly to the fielding of operational C4l capabilities.” TihA stipulates DIl compliance as part

of its requirements. It also “... replaces the standards guidanceTiectimical Architecture

Framework for Information (TAFIM) currently cited in DOD Regulatios000.2-R.”

Department of Defense Technical Architecture Framework for Information Management, Volumes 1-8,
Version 3.0, 2 January 1997, DI SA Center for Architecture. This multi-volume document defines a
standards profile and the DOI&chnical Reference Manual (TRM) for information management
systems. This document set also presents a high-level technical architecture that is useful for
classifying levels within a system’s infrastructure. TR distinguishes between the hardware
platform, hardware-specific services, supporting infrastructure services, and mission applications.

DIl COE I&RTS: Rev 3.0 July 1997 17

Applicable Documents, Standar ds, and Specifications

8. Information Technology - Portable Operating System Interface for Computer Environments (POS X) -
Part 1: System Application Program Interface (API) [C Language] , 1SO 9945-1, 1990; Information
Technology - Portable Operating System Interface for Computer Environments (POS X) - Part 2: Shell
and Utilities, | SO 9945-2, 1993. The POSIX documents are an ongoing standardization effort that is
attempting to define a common set of low-level functions, especially at the operating system level,
across al hardware platforms and operating systems.

9. User Interface Specification for the Defense Information Infrastructure (DII), Version 2.0,
1 April 1996, DI SA. This document, sometimes called the DIl Syle Guide, defines the “look and feel”
of the user interface for COE-based systems.Udge | nterface Specification provides specifications
for applications using Motif and Windows GUIs; a future version of the document will include
Windows NT and Web-based applications.

DIl COE I&RTS: Rev 3.0 July 1997 18

TheDII COE

1.7 Document Structure

Thisdocument is structured to correspond to the typical phases in a development cycle, beginning with
how a devel oper builds a segment, submitsit to the government, and then how it is fielded to an operational
site. Chapter 1 of this document is an overview of the DIl COE, abrief history of its devel opment, and
applicable documents and standards.

Chapter 2 gives a brief technical description of the COE, its components, and the principlesthat determine
whether a software component is part of the COE or isamission application. Selection of the particular
components to popul ate the COE determine what applications can be supported, but the principles which
define a COE arenot application-specific. Chapter 2 also describes the important concept of DI
compliance and maps compliance to levels of interoperability.

Chapter 3isan overview of the devel opment process. It includes a discussion of the process from segment
registration through devel opment, submission to DISA, integration, and site ingtallation. The tools provided
in the COE and how they are used is key to understanding automated integration.

Chapter 4 describes SHADE and other database considerations within the context of the COE. Databases
are heavily used within COE-based systems, and early consideration of their structure, how they are to be
used, and how they are to fit into the overall system is crucial in building a successful system.

Chapter 5 describes the runtime environment as it exists for operational stes, the disk directory and file
structure fundamental to the COE, and the procedures for integrating sesgmentsinto a runtime environment.
Requirements detailed in Chapter 5 must be carefully followed so that applicationswill not interfere with
each other, and so that integration is largely an automated process.

Chapters 6, 7, and 8 are new with thisversion of the I& RTS. They describe extensions for the COE
reference implementation that runson NT platforms, extensions to the COE to support Web applications,
and support for Distributed Computing Environment (DCE) applications respectively.

Chapter 9 provides some suggestions for setting up a software devel opment environment. Few
requirements are stipulated for a devel opment environment, allowing as much freedom for devel opers and
program managers as possible.

Chapter 10 describes two important componentsfor both devel opers and operational sites. the online COE
Software Distribution Management System (SDMS), and the COE Information Server (CINFO). These
components are used to disseminate and manage software, documentation, meeting notices, and general
information of importance to the COE community.

Appendix A liststhe currently supported COE configurations. The appendix includes supported hardwere,
and supported COTS versions. It also describes the Reference Implementation program whereby vendors
may obtain low-level components of the COE and port them to their hardware platforms.

Appendix B presentsachecklist for developersto use asan aid in determining the degree towhich a
segment is DII-compliant. Asdescribed in the appendix, some conditions are mandatory, othersrequire a
migration strategy to show conformance, while othersare optional but recommended. This appendix has
been reworded and reformatted to be clearer and easier to apply, but is otherwise unchanged from the
previous |&RTSversion.

Appendix C describes the automated tools provided with the COE. A number of new tools are provided to
simplify the segment development and maintenance life cycle. The philosophy is to provide developers
with access to the sametools that integrators will use so that segment integration is performed, as much as
possible, by segment devel opers prior to segment delivery. Integration of segmentswith the COE isthe
responsibility of the segment developer. Government integrators serve as validators only in this process to
ensure that developers produce DII-compliant segments. In addition to segment validation, government

DIl COE I&RTS: Rev 3.0 July 1997 19

TheDII COE

integrators perform system-level integration of all segments submitted by all devel opersto creste the target
system.

Appendix D gives additional information on the COE online repository (SDMS) and the COE information
server (CINFO).

Appendix E describes how to register a ssgment and what information isrequired for registration. Segment
registration isrequired in order to identify potential conflicts as early in the devel opment cycle as possible.

The remaining appendices provide additiona information on products within the COE, such asthe
Relational Database Management System (RDBMYS), that are either vendor-specific or product-version-
specific.

Finally, aList of Acronyms used in the I&RTS are presented and a Glossary of frequently encountered
terms. The acronyms and terms are encountered throughout DIl COE-rel ated documents.

DIl COE I&RTS: Rev 3.0 July 1997 20

TheDII COE

Thispageisintentionally blank.

2. TheDIl COE

The concept of a COE as embodied in the DIl COE is perhaps the most significant and useful technical
byproduct of the Joint Service/Agency technical meetings that led to the successful GCCS devel opment
effort. It represents the culmination of several years of development amongst the services/agenciesand it is
interesting to note that the services/agencies independently arrived at similar conclusions. The DIl COE
encompasses architecture, standards, specifications, software reuse, shareable data, interoperability, and
automated integration in a cohesive framework for systems devel opment. Automated integration is
described more fully in Chapter 3.

This chapter is devoted to explaining the DIl COE in detail. Definition of a COE is principles-driven, not
application-driven, so this chapter beginswith a discussion of those principles. Selection of the actual
components to popul ate the COE creates a COE reference implementation®. Thisisimportant because the
components which congtitute a COE instantiation determine the specific mission domain that a COE can
address (e.g., C4l for GCCS, logistics for GCSS, finance for ECPN), and how broadly defined the mission
domain can be. Because the COE is structured so that only required components are |oaded, a properly
defined COE is suitable for a service-specific system (e.g., Navy IMCIS, Air Force Battlefield Situation
Display [BSD]) or ajoint system (e.g., GCSS, ECPN). Also, because the architecture is principles-driven,
the DIl COE is extenshble to larger mission domains by expanding the selected set of software components.
The COE is an open architecture whose principles apply equally well to UNIX™ and non-UNIX platforms
such asthe Personal Computer (PC). The DIl COE contains areference implementation for both UNIX and
NT platforms.

Subsection 2.1 discusses fundamental COE concepts and al so describes what is meant by DIl compliance
and interoperability. Aswith any standard, complianceis required to avoid conflicts that prevent
interoperability. Take careful note in reading subsection 2.1 that the discussion isrelevant to any COE-
based system since the principles apply much more broadly than to a single system such as GCCS or
GCSS. Remaining subsections elaborate on software and hardware configurations selected for support by

® Reference implementation means that an implementation of the COE exists and has been used as the basis

for producing the same functional equivalent on other platforms. It does not imply that devel opers will be

provided with source code to the COE and thus be responsible for porting it to other platforms.

19 UNIX in this document is used in the sense of a vendor-proprietary implementation of the “traditional”
UNIX operating system. Although desirable, it is not necessary that vendors have received an X/Open
UNIX 95 branding.

DIl COE I&RTS: Rev 3.0 July 1997 21

TheDII COE

DISA and how the softwareis structured at atop level to limit site operators to only those functions they
are authorized to access.

DIl COE I&RTS: Rev 3.0 July 1997

22

Fundamental COE Concepts

2.1 Fundamental COE Concepts

In COE-based systems, all software and data - except certain portions of the kernel (see subsection 2.1.2.1)

such asthe operating system and basic windowing software - are packaged in self-contained units called

segments. Thisistruefor COE infrastructure software and for mission-application software aswell.

Segments are the most basic building blocks from which a COE-based system can be built. Segments are

defined in terms of the functionality they provide, not in terms of “modules,” and may in fact consist of one
or more “modules.” They are defined as a collection of related functions as seen from the perspective of the
end user, not the developer. The reason for defining segments in this way is that it is a more natural way of
expressing and communicating what software features are to be included in, or excluded from, the system
than by individual process, file name, or data table. For example, it is more natural to think of a system as
containing a message processing segment than executabled/PalledandMP_Cut . It is more natural

to the end user to think of a word processor segment than a software module that opens a file, another
module that paginates a file, another module that compresses a file, etc.

Those segments that are part of the COE are kno@®Bscomponent segments, or more precisely, as

segments that further have the attribute of being contained within the COE. Segments that are built on top

of the COE to provide capabilities specific to a particular mission domaini saien-application

segments. The principles which govern how segments are loaded, removed, or interact with one another are
the same for all segments, but COE-component segments are treated more strictly because they are the
foundation on which the entire system rests. A later chapter further refines the segment concept to
distinguish between data segments, software segments, patches, etc. but the point here is that segments are
a technique for packaging system components.

Each segment in the system contains a directory with a collection of data files that “self-describe” the
segment to the rest of the COE. The directory that contains these files is cadkpiritae descriptor
directory and the files themselves are caldegment descriptors. The process of decomposing a
component into individual packages and creating the required segment descriptors segradiatdtion.

Packaging a system in terms of segments along with the strict rules which govern the COE and runtime
environment provide several immediate benefits:

e Segment devel opers are decoupled and isolated from one another. Segments are self-contained within
an assigned directory. Developers have maximum freedom within the assigned segment directory, but
minimum freedom outside it. This allows multiple developers to work in parallel with support for
seamless integration after development.

* Extensionsto the environment provided by the COE are coordinated through automated software
tools. It is not possible to create a single configuration of the COE that meets all possible mission-
application or site-unique requirements. However, the COE tools make it possible to extend the
environment provided by the COE in a carefully controlled way to ensure compatibility and identify
segment dependencies and conflicts.

« Compliance verification and ingtallation can be automated. Standards without automated validation
are difficult to use in practice, especially in a program where the system is large and there is a need to
coordinate activities from several different contractors, program sponsors, services, and agencies. The
COE approach to validation is closely related to software installation so that automation of one directly
leads to automation techniques for the other.

« Mission-application segments are isolated fromthe COE. System integration problems are frequently a
result of an undisciplined interaction between software components or because of tight coupling
between components. The COE controls interaction through APIs and isolates mission applications
from the COE-component segments so that failure of one mission-application segment is less likely to
affect another or affect the stability of the COE foundation itself.

DIl COE I&RTS: Rev 3.0 July 1997 23

Fundamental COE Concepts

* Segments created by one devel oper for one system can be readily reused by another devel oper for
another system. That is, the DIl COE is an effective strategy that includes not just software reuse, but
also ensuresthat areused segment fits seamlessly into the new system.

* Integrationissimplified and the original developers resolve most integration problems before the
segment is ever submitted. The segment descriptors “self-describe” the segment so that all pertinent
information required to integrate the segment into a system is contained in a standard, known location.
The tools that validate conformance to the COE detect a large percentage of traditional integration
difficulties. Moreover, the process of integration is largely automated as a byproduct of the installation
tools themselves. By its very nature, the DIl COE process pushes integration responsibilities further
down to the original developer than is done with more traditional approaches.

« Configuration Management is smplified. One way that the COE process simplifies configuration
management is by using segment descriptors that allow dependencies on, or conflicts with, other
segments to be expressed. It then becomes possible to express the requirement for a top-level
functional capability (e.g., a tool for editing an Air Tasking Order) and then recursively traverse a
dependency tree to identify all required segments for the desired capability.

These benefits apply equally well to UNIX and NT environments and are in fact not dependent upon the
underlying operating system.

The DIl COE is asuperset of capabilities. It contains far more functionality than would ever be installed on

a single platform or even at a specific operational site. Thus, it is important to note and understand that just
because a segment is part of the COE, it is not necessarily always present or required. Considerable
flexibility is offered to customize the environment so that only the segments required to meet a specific
mission-application need are present at runtime. This approach allows minimization of hardware resources
required to support a COE-based system.

To illustrate the point, consider an example. The COE contains a service for displaying maps. However,
some C4l operators in command centers only need to read and review message traffic and do not need or
want to view a tactical display. Logistics operators using GCSS do not need to see the tactical picture at all
and may only desire to see a map when planning transportation routes. For such operators it is not
necessary at runtime to have the extra memory and performance overhead of the segments that generate
cartographic displays.

Understanding the concept of a segment is fundamental to understanding and using the DIl COE. It is,
however, only the starting point. Given the background on how COE-based systems are packaged, it is now
time to understand the internal structure of the DIl COE.

2.1.1 COE Taxonomy

Segments that comprise the COE can be categorized in several ways. The original GCCS COE was
subdivided into 19 functional areas and was organized largely by technologies employed such as network,
database, and Mapping, Charting, Geodesy, and Imaging (MCG&I). Working groups were established for
each of the 19 functional areas to consolidate operational requirements from each of the services/agencies
and to evaluate and recommend candidate modules as core components. This taxonomy was initially
successful and led to several early successes. However, the large number of working groups defined by this
taxonomy quickly became unwieldy and communication within and between working groups became
infeasible.

The DISA COE Design Working Group revisited the COE taxonomy as part of the effort to expand the
GCCS COE into a DIl COE. The present taxonomy consists of two layers: Infrastructure Services and

DIl COE I&RTS: Rev 3.0 July 1997 24

Fundamental COE Concepts

Common Support Applications'. These two layers are described in more detail in the Architectural Design
Document for the Defense Information Infrastructure (DI1) Common Operating Environment (COE), and
summarized in Figure 2-1. While encompassing the same functiondlity as the original 19 functional areas,
this taxonomy approaches the problem from an architectural perspective rather than functional, and greetly
reduces the communi cations burden in and between working groups. Figure 2-1 will be updated to include
other functional areas as appropriate as the COE is extended to other mission domains. It has been updated
since the Architectural Design Document to extend it for logistics support and to include a Web Server.
Thisserver is provided to allow access to COE-based applications from a Web browser. A later chapter in
the |& RTS describes the COE Web in more detail.

The difference between Infragtructure Services and Common Support Applicationsisthe difference
between data and information (i.e., processed data). It isthe difference between exchanging data and
sharing data. Infrastructure Services provide low-level tools for data exchange. These services provide the
architectural framework for managing and distributing the flow of data throughout the system. Example
services include Transmission Control Protocol/Internet Protocol (TCP/1P) and User Datagram Protocol
(UDP) protocals, DCE, and CORBA.. The achievement of effective data sharing requires use of all the COE
services, especially those provided by the Shared Data Environment (SHADE). Subsection 2.1.2.5
describes SHADE in more detail.

Common Support Applications, on the other hand, provide the architectural framework for managing and
disseminating information flow throughout the system, and for sharing information among applications.
Thislevel contains facilities for processing and displaying common data formats and for information
integration and visualization. Servicesin thislayer tend to be mission-domain specific. Examplesinclude
generation and dissemination of mission-relevant aerts, and word processing support.

Figure 2-1 also shows that thereis a relationship between the service provided and whether it istypically
provided by a COTS product or a GOTS product. The DIl COE uses COTS whenever possible, in keeping
with DOD directives. Infrastructure Services are normally provided by COTS solutions because they are
closdy tied to underlying vendor products such as the operating system. Common Support Applications,
because the services they provide are closaly related to mission applications, tend to be provided by GOTS
solutions. In some cases, especially in the Office Automation area, services may include COTS solutions.

Selection of software modules that fulfill these COE component responsibilities is an ongoing task asisthe
evolutionary nature of the DIl COE. Changes are made to further populate the COE, to optimize selected
components, or to extend the COE to meet requirements from other mission domains. Even though the
process is evolutionary, the COE preserves backwards compatibility so that mission applications are not
abandoned just because there is an update of the COE. Refer to the appropriate AP, User’'s Guide, and
system release documents for detailed information on the components currently selected for the COE.

2.1.2 COE Architecture

Figure 2-2 isasimplified diagram that illustrates the various level s within the DIl COE and the relationship
between the COE, component segments, mission-application segments, and SHADE. As can be seen, the
COE encompasses APIs, GOTS and COTS software, the operating system, windowing software, sandards
(TAFIM), and specifications (User Interface Specification, I&RTS etc.). Physical databases are also
considered to be part of the COE", including the software (such as the RDBM), which accesses and

! The concepts of a COE kernel and SHADE are presented later in this section. Both of these concepts
should be viewed as subsets of the Infrastructure Services and Common Support Applications layers. The
COE kernd isalimited subset of the Infrastructure Servicesthat isrequired on every platform regardless of
how it will be used. SHADE is a subset of Infrastructure Services and Common Support Applications that
deals with database issues. It is frequently useful to discuss the kernel and SHADE as separate entities, but
their functionality is fully contained within the two layer taxonomy discussed in this section.

2 |n previous COE releases, physical databases were considered outside the scope of the COE although the
database software was inside the COE. The programmatic decision to temporarily exclude physical

DIl COE I&RTS: Rev 3.0 July 1997 25

Fundamental COE Concepts

manages the data. SHADE isan integral part of the DIl COE, and encompasses databases and related
software as noted in the diagram. SHADE and each of the layers are described in more detail below. A
Developer’s Toolkit is also provided in the COE as shown in Figure 2-2.

Figure 2-2 is a generic diagram intended only to show relationships. The labeled boxes in the figure are not
intended to be exhaustive, but are representative services because (a) otherwise the diagram would be
needlessly complicated, and (b) the COE is evolving to include other segments to support new mission
domains. The services shown are representative, but the structure and principles discussed are the same

across all mission domains.

COTS
Solutions

Office MCG&I Correlation Online
Automation Help
Common Support Applications
M essage Logistics Data Access
Processing Alerts Analysis Services
M anagement Comms Web Presentation
Services Server Services
Infrastructure Services
Distributed W orkflow Global Data Data
Computing M anagement M anagement M anagement

Operating System Services

Figure 2-1: DIl COE Services

GOTS
Solutions

A

databases was made in order to concentrate on the services that would more directly support mission
applications. Databases are now included in the DIl COE as part of the SHADE.

DIl COE I&RTS: Rev 3.0

July 1997

26

Fundamental COE Concepts

To use a hardware analogy, the COE is a collection of building blocks that form a software “backplane.”
Segments “plug” into the COE just as circuit cards plug into a hardware backplane. The blocks containing
the operating system and windowing environment are akin to a power supply because they contain the
software which “powers” the rest of the system. The segments labeled as COE-component segments are
equivalent to already built boards such as Central Processing Unit (CPU) or memory cards. Some of them
are required (e.g., CPU) while others are optional (e.g., a specialized communications interface card)
depending upon how the system being built will be used. The blocks in Figure 2-2 labeled as mission
application areas are composed of one or more mission-application segments. These segments are
equivalent to adding custom circuit cards to the backplane to make the system suitable for one purpose or
another.

The API layer shown in Figure 2-2 defines how other segments may connect to the backplane and utilize
the “power supply” or other “circuit cards.” This is analogous to a hardware schematic diagram that
indicates how to build a circuit card that will properly plug into the backplane. The figure also implies that
APIs are the only avenue for accessing services provided by the COE. This is true for all COE software and
all layers, including COTS software. However, the COE does not create an additional layer on top of the
COTS software. These components may be accessed directly using vendor-supplied APIs for these
commercial products as long as such usage does not circumvent the intended COE architecture. For
example, the COE includes a POSIX-compliant operating system. Some vendors provide non-POSIX
compliant extensions to the operating system services. Use of such extensions, even though they are readily
available through vendor-supplied APIs, is not allowed because such usage violates the intended COE
architecture.

This hardware analogy can be extended to the SHADE portion of the COE, but with some significant
distinctions. Within this conceptual model, the Database Management System (DBMS) functions as the
COE'’s disk controller and disk drives. The applications’ databases can be equated to directories or
partitions on the drives accessed through the DBMS “disk controller.” Data objects belonging to each
database then can be considered as files within those “directories.”

This analogy is critical to understanding the modularity limitations for databases within the COE. One can
replace most peripherals or circuit cards without any side effects just as one can replace mission
applications without losing information. However one cannot put in a larger disk drive, or change from one
type of controller to another, without losing the data on the disk. While upgrading mission applications is
like swapping circuit cards, upgrading databases is like rebuilding a disk or directory structure. Instead of
replacing a component, one must save and then restore the files on the disk. Proper design of COE/SHADE
databases must provide the ability to perform field upgrades without the loss of any data.

COE/SHADE databases are divided among segments as are mission applications, but with a different
focus. Mission applications are segmented based on their functionality. Databases are segmented
functionally by the subject areas of the mission applications they support. Mission applications are
functional modules; databases are information modules.

The precise configuration of COTS products used in the COE is placed under strict configuration control.
This is necessary because configurable items such as the amount of shared memory or swap space must be
known and carefully controlled in order for other components in the COE to operate properly. For this
reason, COTS products are assigned a version number in addition to the vendor-supplied version number so
as to be able to track and manage configuration changes. Databases are also assigned version numbers
because their configurations must be controlled since the data content may change from release to release,
or the database schema may change.

A fundamental principle throughout the COE is that segments are not allowed to directly modify any
resource “owned” by another segment. This includes files, directories, modifications to the operating

system, and modification to windowing environment resources. Instead, the COE provides tools through
which a segment can request extensions to the base environment. The importance of this principle cannot
be overemphasized because environmental interactions between software components are a primary reason
for difficulties at integration time. By providing software tools that arbitrate requests to extend the

DIl COE I&RTS: Rev 3.0 July 1997 27

Fundamental COE Concepts

environment, integration can be largely automated and potential problem areas can be automatically
identified.

For example, the COE predefines a set of portsinthe UNIX / et ¢/ ser vi ces file. Some segments may
need to add their own port definitions, but thiswill create conflictsif the port definitions are the same as
those defined by the COE or another segment. To identify and prevent such conflicts, sesgmentsissuea
reguest to the COE (see Chapter 5 for how this isdone) to add their port definitions. This processis called
environment extens on because a segment is modifying the predefined environment by extension, not
through replacement or deletion.

COE-component segments shown in Figure 2-2 are typically designed to be servers, although some are
provided aslibraries to be linked with an application segment. Note that in practice such segments will
often operate in both a client and server mode. For example, atrack management segment isa server for
clientsthat need to retrieve the current latitude/l ongitude location of a platform. But the track manager
itself isa client to a communications server that initially receives track-related reports from sensors or other
sources. Refer to the Architectural Design Document for the Defense Information Infrastructure (DII)
Common Operating Environment (COE) document for more detailed discussion of how COE-component
segments are designed and interact. For purposes of the present discussion, it is sufficient to view COE
segments as servers that are accessible through APIs.

2.1.2.1 COE Kernel

The COE will normally make available alarge number of segments, not all of which are required for every
application. The COE kernel isthe minimal set of software required on every platform regardless of how
the platform will be used. The COE kernel*® components are shown in Figure 2-2 and include the Operating
System and Windowing Services and a collection of other services that properly belong in the
Infrastructure Services Layer.

3 The kernd includes both COTS (e.g., operating system) and GOTS software. The other COE layers aso
contain COTS software. Contact the DIl Engineering Office for information on responsibility for obtaining
licenses for COTS products within the COE and kernel, and for which COTS product DISA will distribute.

DIl COE I&RTS: Rev 3.0 July 1997 28

0€MY S1d%®1302 11d

1661 AIne

62

94N10911Y2JY 3OO 11Q Z-Z24nbi-

MISSION Functional JOINT/CING
APPLICATIONS Applications Applications Applications Applications

Intelligence
Applications

¥ ¥ ¥ ¥

¥

Standard Application Program I nterfaces

Developer's Tkit

MCG&l Online Help Office Automation Logistics Analysis

COMMON SUPPORT APPLICATIONS

Manag_emen Distributed Presentation Web Workflow Global Data
Services Computing Services Server Management Management

INFRASTRUCTURE SERVICES

Network Svcs COE
(NIS+, DNS) Tools

Standards:

-1&RTS '
- Style Guide Security Mgmt
- POSIX Services

- TAFIM

Print
Services

System Mgmt
Services
-JTA
| Operating System Services (Unix, NT) and Windowing (X, Motif, NT) |

Executive
Manager

e — e
Combat Tactical
Other Intel Support Specific
Files DB DB'’s DB's

Strategic
Specific
C2DB's

Databases

S1dsou0D JOD [euawepunS

Fundamental COE Concepts

A COE kernel will always contain the operating system and windowing environment, but it will normally
include six other features:

1. abasic System Administration function,

2. abasic Security Administration function,

3. an Executive Manager function (e.g., a desktop GUI such as Windows NT or Common Desktop
Environment [CDE]),

4. atemplate for creating privileged operator login accounts,

5. atemplate for creating non-privileged operator login accounts, and

6. COE toolsfor segment install ation.

The System Adminigration segment isrequired because it contains the software necessary to perform basic
system administration tasks such as user account and profile management. The Security Administration
segment isrequired because the security administrator uses it to enforce system security policy. The
operating system and other COE components provide security policy enforcement. Segments loaded later
may provide additional system and security administration capabilities, but the minimum capabilities for
security enforcement and security administration are in the kernel.

The Executive Manager component of the kernel isrequired because it isthe interface through which an
operator issues commands to the system. The Executive Manager is an i con-and-menu-driven desktop
interface, not acommand-lineinterface. The templatesincluded in the COE kernel are used to define the
basi c runtime environment context that an operator inherits when helogsin (which processesto run in the
background, which environment variables are defined, etc.). The COE tools within the kerndl alow other
segmentsto be installed and enforce critica COE principles. The COE kernel assuresthat every platformin
the system operates and behaves in a cond stent manner and that every platform begins with the same
environment.

2.1.2.2 Infrastructure Services

Infrastructure Services are largely independent of any particular application. Within the Infrastructure
Services layer, Management Services include network, system, and security administration.
Communications Services provide facilities for receiving data external to the system and for sending data
out of the system. Distributed Computing Services provide the infrastructure necessary to achieve true
distributed processing in a client/server environment. Presentation Services are responsible for direct
interaction with the human whether that be through windows, icons, menus, or multimedia. Data
Management Servicesincludereational database management aswell as file management in a distributed
environment. Workflow and Global Data Management Services are oriented towards managing logistics
data (e.g., parts inventory, work in process). Note that Data Management Services and Global Data
Management Services are part of SHADE.

2.1.2.3 Common Support Applications

Unlike Infrastructure Services, Common Support Applications tend to be much more specific to a particular

mission domain. The Alerts Service isresponsible for routing and managing alert messages throughout the

system whether the alert is an “out of paper” message to a systems administrator or an “incoming missile”
alert to a watch operator. The Correlation Service is responsible for maintaining a consistent view of the
battlespace by correlating information from sensors or other sources that indicate the disposition of
platforms of interest. MCG&I Services handle display of National Imagery and Mapping Agency (NIMA)
maps or other products, and imagery received from various sources. Message Processing Services handle
parsing and distribution of military-format messages. Office Automation Services handle word processing,
spreadsheet, briefing support, electronic mail, World-Wide-Web browsers, and other related functions.
(Browsers are in the Common Support Applications layer, but Web Servers fall within the Infrastructure
Services layer.) Logistics Analysis contains common functions, such as Pert charts, for analyzing and
displaying logistics-related information. Online Help Services provide applications with a uniform

DIl COE I&RTS: Rev 3.0 July 1997 30

Fundamental COE Concepts

technique for displaying context-sensitive help. Finally, Data Access Services are part of SHADE and
provide applications with common data-access methods procedures, and tools.

2.1.2.4 COE Developer Toolkits

Since the COE isnot a system but afoundation on which systems are built, the COE contains a collection

of developer toolkits to assist the developer in creating mission-application software. Thisisillustrated in

Figure 2-2 in the block labeled Developer’s Toolkit. However, the toolkits are required only during

software development, not during runtime at an operational site. Therefore, developer toolkits are shown as
part of the COE, but outside the Infrastructure Services and Common Support Applications layers. They are
obtained from DISA separate from an actual installable system.

The COE developer toolkits contain libraries of APIs and a collection of tools to assist in the segmentation
process. An overview of the software development process is presented in the next chapter. Appendix C
provides an overview of the COE developer tools (and lists some COE runtime tools). Refer to the
appropriateDll COE Programmer’s Guidefor detailed information on the APIs and segmentation tools.

2.1.25 SHADE

SHADE is an important addition to this version of the I&RTS. Its purpose is to provide the data “missing
piece” for the DIl COE. The present subsection provides an overview of SHADE and describes how it fits
into the overall DIl COE. A later chapter will cover SHADE and database topics in much more technical
detail and depth.

Present systems are not truly interoperable because of inconsistency in algorithms, but also because data
management across systems and operational sites has led to data redundancy and inconsistencies.
Moreover, even when data is consistent across systems, it is not presently structured so as to be shareable.
The SHADE approach is to provide the architectural structure to solve the data sharing problem that in turn
guarantees data consistency, eliminates reduntfameyl promotes true data interoperability and sharing.

The SHADE goal is to allow any authorized user from any authorized workstation to locate, access, and
integrate shared and synchronized data. This is in keeping with the DISA vision of an integrated global
environment that allows warriors to perform “Any Mission, Any Time, Any Where.”

SHADE is both a strategy for data sharing and the mechanisms to achieve it. SHADE is an integral part of
the DIl COE, but it must also bridge the gap between COE-based systems and legacy non-COE systems
because it must provide mechanisms for accessing large databases that are still on legacy mainframes.
SHADE provides COE-component segments in both the Infrastructure Services and Common Support
Applications layers to accomplish this task. SHADE includes the required data-access architectures, data
sharing methodology, reusable software and data components, and guidelines and standards for the
development and migration of systems that meet the user’s requirements for timely, accurate, and reliable
data.

The SHADE components of Figure 2-2 are expanded upon in Figure 2-3 to show the architecture from a
data management perspective. From a process point of view (top part of the diagram), SHADE includes

14 Databases are often deliberately replicated in actual practice for performance reasons. The term
“redundant data” is used when the same data is captured by different systems and stored in different
databases. For example, the friend/foe status of a particular country might be entered into two systems
where each system must maintain and keep the data current. By contrast, when intentional replication is
used, the friend/foe status is captured and maintained by one system and provided to another for its use.
SHADE may not rule out multiple copies of the same data but it does manage the duplication to ensure that
all databases are kept synchronized. Present systems often do not employ effective mechanisms for data
replication, leading directly to significant interoperability problems. SHADE does eliminate redundancy
between systems because, for performance reasons, it replicates and manages dugdicasi@ystems to

ensure data consistency.

DIl COE I&RTS: Rev 3.0 July 1997 31

Fundamental COE Concepts

tools for validating database segments and arepository for data reuse. Metadata Management is at the top
layer between the mission applications and data-access methods. This layer isamong the more challenging
asgpects of SHADE because it requires standardization across the joint community. The Shared Data Access
layer provides services for locating and retrieving the desired data. Thislayer aso manages data replication
and distribution to ensure that all databases are kept closaly synchronized. Data security is aso provided in
thislayer.

The Physical Data Management layer is provided by commercial products and isinitially organized as
relationa databases. (Migration to include other database management technol ogies such as object-oriented
or object relational will be achieved as requirements emerge and technology matures.) SHADE physical
data management services may also include document retrieval, image management, engineering drawings,
or other specialized sorage and retrieval technol ogies where appropriate. The databases may be distributed
across the network, and may in fact be distributed among geographical sites.

Figure 2-3 shows three types of database segments according to their scope and how they are shared. The
three types are Unique, Shared, and Universal.

Unique database segments are those which are typically used by only one application or are under the
configuration control of the segment sponsor. Unique data may be shared between applications, but the
usage isrestricted to a Sngle mission domain. An example of a Unique database segment is a configuration
table that an application reads at initialization time. Such a table would not normally be used by other
applications. This example aso demonstrates that Unique database segments may frequently be represented
by aflat file or similar structure rather than atrue database.

Shared database segments support the information requirements of multiple applications or across multiple
database segments. Shared database segments are typically mission-or-functionally-oriented, and are
generally specific to alimited number of mission domains. Because they affect multiple applications that
will likely span services or functional areas, Shared database segments must be under joint configuration
contral. An example of such a database segment is a database of logistics drawings for military hardware.
Such data spans multiple services, it is used for different purposes (e.g., ordering, inventory control,
maintenance) and hence spans multiple applications, but it is generally limited in scope to the logistics
community. Another example is a segment containing invoice information that is required by both the
finance and procurement communities.

Universal database segments represent the other extreme of “shareability.” Universal database segments
reflect a need for identical data in diverse areas, are used by many applications, and span multiple mission
domains. Universal database segments usually have no dependency on any other segment (except the
DBMS segment) and frequently consist of a small number of tables and elements. A common type is
reference or lookup tables. An example is a database of country-code abbreviations. A larger example
would be the equivalent of “Jane’s Data” with characteristics and performance data concerning weapons,
aircraft, ships, and communications systems. Universal database segments are under stricter configuration
control and require DISA and DOD Data Administration coordination.

The three database segment types are listed in increasing order of scope and “shareability.” That is, Unique
is limited in scope and therefore unlikely to be shared by many applications, while Universal is very broad

in scope andnust be shared across applications in order to promote true interoperability. There is no
physical difference in the database segments, but the level of configuration management increases due to
the wider impact changes would have on operational systems that use the database segments.

2.1.2.6 COE “Plug and Play”

The DII COE is structured as a “plug and play” architecture. The key to the “plug and play” design is
conformance to the COE through the rules detailed in this document and through using only the published
APIs for accessing COE services. There is considerable danger in using unpublished, “private” APIs, or
APIs from legacy systems, because there is no guarantee that interfaces used in this fashion will remain the

DIl COE I&RTS: Rev 3.0 July 1997 32

0€MY S1d%®1302 11d

1661 AIne

€e

94N1091IY2JY eled IAVHS £-Z94nbi

Business Functional JOINT/CING Service C2 Intelligence Mission
Applications Applications Applications Applications Applications Applications
2 A A 2 T ¥
Schemas M odels S thad Mappings Metadata
andards M anagement
J
Data L ocation (Directory)
- .)
Data M ediation (Syntax - Semantics) =
Shared Data %
Data Replication/Distribution Access m _g
= =< o
=4) o
)) =
Data Secur ity/I ntegrity § 8 S
e |3 2
= o
- E =
g 3
Database Physical Database =y 7
Packaging | Data Storage | Administrator S
T
j
Shared Data | External
Servers Data
/U

‘SLUeS 8y}

ale sysliay) pue spnpoid S10D Joani Ajeeusb osesisiyl 'seseap. Jusnbesgns Ul 1SIXe UAS I0 ales

S1dsou0D JOD [euawepunS

Fundamental COE Concepts

Discussion of the COE as a “plug and play” architecture is not intended to trivialize the effort that may be
required to develop and integrate a segment into the COE. Migration of existing legacy systems to the COE
is conceptually straightforward but may require considerable effort due to the requirement to switch to a
different set of building blocks. That is, the effort may not be so much in adjusting to a new architectural
concept but in adjusting code to use a different set of APIs. The “plug and play” paradigm is a good
conceptual model because it clearly conveys the goal and the simplicity that most segment developers will
encounter.

2.1.3 COE Configuration Definitions

A COE-based system will consist of a large number of segments. It is neither desirable nor feasible to
install all segments on all platforms. Some segments need to be installed on one platform but not another
because of the role that the platform will play in the overall system. For example, systems will often
dedicate one or more platforms with large-capacity disk drives to be configured as database servers.
Workstations that operators use, client workstations, will not have large enough drives to handle the
database storage requirements. Therefore, the database server software should be loaded on the database
server but not the client platform. The COE kernel is required on every platform, but additional segments
are dependent upon how the platform will be used.

The COE includes the ability to create configuration definitions that define which segments are to be
loaded on which platforms. gonfiguration definition™ is a hierarchy that defines collections of segments

that are grouped together for installation convenience. For example, it is more convenient for an installer to
indicate that a platform is to act as a database server (a configuration definition) or used as an intelligence
analyst workstation (another configuration definition) than to manually and individually select all of the
segments that need to be installed. The COE is designed so that a site may install predefined configuration
definitions or can customize the installation to suit site-specific requirements.

A configuration definition is organized into folders, configurations, and bundles. Figure 2-4 uses an
example from the GCCS system to show the relationship between each of these terms, and to illustrate the
flexibility in predefining and managing software installations. The example shows how the GCCS system
could be organized into configuration definitions, but not how G@®©S8 be organized. The example is

not intended to convey that platforms must be dedicated to a single, specific function. As long as there are
no segment conflicts, a platform may be configured to support multiple missions and thus achieve the goal
of “any platform for any function.” The example is intended only as an aid to understanding how
configuration definitions may be constructed.

The objective of the example shown in Figure 2-4 is to install identical database servers in Intelligence
centers at two GCCS sites: a Commander, Joint Task Force (CJTF) and a Commander-in-Chief
Headquarters (CINCHQ). In this simplified example, both Intelligence centers use imagery applications,

but the Intel center at the CINCHQ has access to hardware for capturing images, while the one at the CJTF
does not.

For simplicity, the database server is to consist of 4 segments: a segment for creating database backups
(Bkup), an ad hoc query applicatioAdHoc Q), a presentation packadgeof ns), and a patchRat chl).

The imagery software is to consist of an application for creating bBefsef), an application for

capturing imagesdapt ur e), and an application for converting images from one format to another
(Convert).

!> The termConfiguration Definition replaces the terwariant in previous & RTS releases. The concepts

are exactly the same except that variant has the negative connotation of implying a “deviation.” Further, the
Configuration Definition concept is more refined in tt8RTS version in its decomposition into folders,
configurations, and bundles.

DIl COE I&RTS: Rev 3.0 July 1997 34

Fundamental COE Concepts

A configuration definition file isafile that describes the hierarchy and relationships among folders,
configurations, bundles, and segments that comprise a distribution. A distribution™ is the physical media
used to install DII-compliant segments (e.g., Digital Audio Tape [DAT] tape, 8mm tape, Compact Disc
Read Only Memory [CDROM)]). A single digtribution may span multiple media of the same type (e.g.,
several DAT tapes, several CDROMS). A configuration definition fileis used to generate the table of
contents for what is contained in the distribution.

In addition to being physical media, another useful way to think of a distribution is as ahigh-level division
that can be used to distinguish between systems (e.g., GCSS, GCCS, ECPN), as shown in this example.
The example would work equally well by defining the desired distributions one level lower in thetree and
thus place responsibility for site configurations on a manager responsible for the site, rather than on a
manager responsible for GCCS configurations at all sites. A digtribution isnot sufficiently detailed to
permit the actual installation of any software since it must be decomposed further to thelevel of an actua
platform.

A folder, likewise, isanon-ingalablelist of one or more folders, configurations, or bundles. Foldersare
used for organizational and display purposes only. A folder isnot directly installable because it is organized
at alevel that spans multiple platforms and perhaps even multiple sites. In this example, the GCCS
distribution mediais composed of multiple folders at the top level representing geographically dispersed
sites. The next lower level of foldersis contained within asingle site.

A configurationisalist of bundles and/or segmentsthat can be installed on asingle machine.
Configurations are mutualy exclusive. That is, only one configuration can be installed on a single machine
because there may be conflicts within the segments that comprise two different configurations. In the
example, thel nt el folder for the CJTF site contains two configurations for platforms: a database server
configuration (DBSer ver) and an imagery configuration (I mager y1). A particular platform may be
loaded with a DBSer ver or an | mager y1 configuration, but not both. This does not mean that imagery
applications cannot reside on a database server. It only meansthat in this example, an engineering decision
was made to prevent it from happening because of potential resource conflicts between the two
configurations. If it were actually desirable to combine the applicationsin practice, a configuration could be
defined which contained database server and imagery bundles. Or, desired segments could be selected
individually for loading onto the platform.

% The distribution term is a POSIX concept. It has been modified dightly in the I&RTS to include
segments.

DIl COE I&RTS: Rev 3.0 July 1997 35

Fundamental COE Concepts

ECPN

GCSS r.i.,’
cces [o o] Distributions

=

o~

FFG CVN CJTF .. MEF TRANSCOM CINCHQ .. Folders
7INS
Crypto Ops Intel EW Logigics .. Ops Intd .. Folders
DBServer Imageryl DBSer ver Imagery2 Configurations
Wﬁ Camera Bundles
/N /N
Patchl Bkup AdHocQ Forms Brief Convert Capture Segments

Figure 2-4: Configuration Definitions

A bundle' isalist of other installable bundles and/or segments. For brevity, Figure 2-4 does not show any
bundles that contain other bundles. A bundleisdirectly installable, even if it contains further bundle
definitions because the segments that comprise the bundle are checked when the bundleis created to verify
that they do not conflict with one another. In the example shown, there aretwo bundles: DBUt i | s and
Canera. TheDBUt i | s bundleisused a both the CJTF and Cl NCHQ sites, but Caner a isonly used at

Cl NCHQ.
There are several things to note about this example.

1. Atingdlation time, theinstaller can usetheinstaller tool to select a configuration and al of the
appropriate segments will automatically be installed. Theinstaller may also choose to decompose the
configuration to look at individual bundles and segments and install them individually instead.

2. Configurations, bundles, and segments may be selected and ingtalled directly without further selection
on the part of the ingtaller. Folders cannot; the installer must select some lower level in the hierarchy.

3. Folders may participate in multiple distributions or other folders; configurations may participatein
multiple folders; bundles may participate in multiple configurations; and segments may participate in
multiple bundles or configurations. Multiple participation is subject to the constraint that segments
within a configuration or bundle cannot contain conflicting segments.

4. Configuration definitions are optional. They are provided as a convenience only. Also, it ispossibleto
skip any of the levels in the configuration definition except for the lowest level (i.e., segments).

7 The bundle concept is from POSIX, but has been modified dlightly in the I& RTS to include segments.

DIl COE I&RTS: Rev 3.0 July 1997 36

Fundamental COE Concepts

5. If asegment is selected twice either on purpose or asaresult of how the configuration definition is
constructed, it isactually installed only once.

6. Careshould be taken in creating configuration definitions. It iswise to keep classified segments
separate to avoid security management problems.

The same media can be used to load any platform regardless of which site or in which space the platform is
located; however, during the ingallation process, only that portion of the configuration definition required
for a particular platform is actualy loaded. The COE kernel isarequired member of every distribution.

There are several advantages to configuration definitions:

« From a configuration management and security perspective, only one set of distribution media needs to
be controlled. All software and data that are needed for the ingtallation are contained on the media.

* From aninstallation perspective, the siteingaler only has one set of distribution media to worry about
regardless of platform use or hardware type. (The COE tools allow segments for multiple platformsto
exist on the same physical distribution media. At ingallation time, the software determinesthe
platform type and then makes available for selection only those segments that can execute on the
platform.)

e From a system design perspective, the ahility to create configuration definitions allows the flexibility
of loading and executing only that software which is required to support a particular mission
requirement.

2.1.4 DIl Compliance

The degree to which “plug and play” is possible is highly dependent upon the degree to which segments are
Dll-compliant. DIl compliance is defined to be an integer value that measures

» the degree to which a segment or system achieves conformance with the rules, standards, and
specifications identified by the COE,

» the degree to which the segment or system is suitable for integration with the DIl COE reference
implementation, and

« the degree to which the segment or system makes use of COE services.

Appendix B contains a detailed checklist for areas where compliance is mandatory and an additional
checklist for areas where compliance will be required in the future but are optional at present. The
compliance level for a segment is determined by answering “True,” “False,” or “N/A” for each question in
the checklist. The Category 1 (see below) compliance level assigned is the highest numbered level for
which there are not “False” replies. The COE provides a suite of tools, described in Appendix C, which
validate COE conformance.

By its very nature, an exhaustive list of “do's and don'ts” is not possible. DIl compliance must be guided by
overarching principles with checklists and tools to aid in detecting as many problem areas as possible. Full
DIl compliance embodies the following principles:

1. Segments shall comply with the guidelines, specifications, and standards defind&iRTiSethe
User Interface Specification, DIl Software Quality Compliance Plan, and related documents such as
the JTA.

2. Software and data shall be structured in segment format. Of necessity, COTS components of the COE
kernel are exempted from this requirement. Segment format is described more fully in Chapter 5.

DIl COE I&RTS: Rev 3.0 July 1997 37

Fundamental COE Concepts

3. Segmentsshall beregistered and submitted to the onlinelibrary. The registration process is described
in Appendix E while submission of segmentsto the online library is described in Chapter 10 and
Appendix D.

4. Segments shall be validated with the Ver i f ySeg tool prior to submission, and shall successfully pass
the Ver i f ySeg tool with no errors. An annotated listing of the Ver i f ySeg tool output shall be
submitted with each segment release.

5. Segments shall be loaded and tested in the COE environment prior to submission. Segment devel opers
areresponsible for testing their segment within the full COE kernel and with all COE-component
segments that they depend upon. Thereis no requirement to include mission-application segmentsin
the test for which thereis no dependency.

6. Segmentsshall fully specify dependencies, conflicts, and required resources through the appropriate
segment descriptors defined in Chapter 5.

7. Segments shall be designed to be removable and tested to confirm that they can be successfully
removed from the system. Some segments, especially COE components, are designed to be
“permanent” but even these must be removable when a later segment release supersedes the current
one.

8. Segments shall access COE components only through APIs published by DISA and segments shall not
duplicate functionality contained within the COE. There is no requirement to integrate to COE
functionality not required by the segment, but note that some segments may have an implied
dependency on other segments.

9. Segments shall not modify the environment or any files it does not own except through environment
extension files or through use of the installation tools provided by the COE.

The DII COE defines four areas in which compliance is measured, shown in Figure 2-5, called compliance
categories. Within a specific category, a segment is assigned an integer value, called the cortgpthnce
which is a measure of the degree to which a segment is compliant within that category. The DIl COE takes
this approach because it is especially useful in developing migration strategies for legacy systems.
Compliance categories indicate the broad area in which a segment must be improved while compliance
levels express the degree to which the segment meets COE objectives within that category.

The four DIl compliance categories are:

Category 1: Runtime Environment. This category measures how well the proposed software fits
within the COE executing environment, and the degree to which the software reuses COE
components. It is an assessment of whether or not the software will “run” when loaded on a COE
platform, and whether or not it will interfere with other segments. This category is closely related
to, and is a way of measuring, interoperability.

Category 2: Style Guide. This category measures how well the proposed software operates from

a “look and feel” perspective. It is an assessment of how consistent the overall system will appear

to the end user. It is important that the resulting COE-based system appear seamless and consistent
to minimize training and maintenance costs.

Category 3: Architectural Compatibility. This category measures how well the proposed

software fits within the COE architecture (client/server architecture, DCE infrastructure, CDE
desktop, etc.). It is an assessment of the software's potential longevity as the COE evolves. It does
not imply that all software must be based on client/server or Remote Procedure Call (RPC)
techniques. It simply means that a reasonable design choice has been made given that the specific
architectural characteristics of the COE reference implementation.

DIl COE I&RTS: Rev 3.0 July 1997 38

Fundamental COE Concepts

Category 4: Softwar e Quality. This category measures traditional software metrics (lines of
code, McCabe complexity metric, etc.). It is an assessment of program risk and software maturity.

Runtime Architectural Software
Environment Style Guide Compatibility Quality

0O—» | 0O—» k O—» n | 0O— m

Figure 2-5: DIl Compliance Categoriesand L evels

Note: While there are four compliance categories, style-related items
are included within the 1&RTS checklist. Specifications within
the User Interface Specification are mapped to these items at the
appropriate compliance level where they are included. For
example, Categoryl (Runtime Environment) Level5
compliance requires adherence to the “look and feel” of the
native GUI. TheUser Interface Specification contains a checklist
for verifying that a segment conforms to the native GUI.

These four categories attempt to quantitatively answer the following questions about a proposed addition to
the system:

e (Category 1: Runtime Environment) Can the proposed software be added to the system? Will
it adversaly affect system interoperability?

e (Category 2: Style Guide) Isthe proposed software user-friendly? Will it make the system
appear seamlessto an end user?

e (Category 3: Architectural Compatibility) |Is the proposed software architecturally sound and
in line with where the COE is going? Will technology advances quickly obsol ete the proposed
software?

* (Category 4: Software Quality) What is the program risk? Will significant program
expenditures be required for life-cycle maintenance of the product?

The principles and techniques described in the remainder of this subsection apply to each of the compliance
categories. However, only the compliance levels for the Runtime Environment Category will be discussed
any further.

The COE defines eight progressively deeper levels of integration for the Runtime Environment Category.
Theselevels are directly tied to the degree of interoperability achieved asis described in subsection 2.1.5.
Note that levels 1-3 are “interfacing” with the COE, not true integration. True integration begins at level 4.

Level 1: Standards Compliance Level. A superficial level in which the proposed capabilities

share only a common set of COTS standards. Sharing of data is undisciplined and minimal
software reuse exists beyond the COTS. Level 1 may, but is not guaranteed to, allow simultaneous
execution of the two systems.

DIl COE I&RTS: Rev 3.0 July 1997 39

Fundamental COE Concepts

Level 2: Network Compliance Level. Two capabilities coexist on the same LAN but on different
CPUs. Limited data sharing is possible. If common user interface standards are used, applications
on the LAN may have a common appearance to the user.

Level 3: Platform Compliance L evel. Environmental conflicts have been resolved so that two
applications may reside on the same LAN, share data, and coexist on the same platform as COE-
based software. The COE kernd, or its equivalent, must reside on the platform. Segmenting may
not have been performed, but some COE components may be reused. Applications do not use
COE services (except for kernd servicesif the COE kernd isloaded) and are not necessarily
interoperable.

Level 4: Bootstrap Compliance Level. All applications arein segment format and share the COE
kernel. Segment formatting allows automatic checking for certain types of application conflicts.
Use of COE servicesisnot achieved and users may require separate login accounts to switch
between applications.

Level 5: Minimal DIl Compliance Level. All segments share the same COE kernel and

functionality is avail abl e via the Executive Manager. Boot, background, session, and local

processes are specified through the appropriate segment descriptors. (See Chapter 5for a

description of the types of processes.) Segments adhere to the basic “look and feel” of the native
GUI, as defined in thBser Interface Specification. Segments are registered and available through
the online library. Applications appear integrated to the user, but there may be duplication of
functionality and full interoperability is not guaranteed. Segments may be successfully installed
and removed through the COE installation tools. Database segments are identified as unique or
sharable according to their potential for sharing.

Level 6: Intermediate DIl Compliance L evel. Segments utilize existing account groups, and

reuse one or more COE-component segments. Minor documented differences may exist between
theUser Interface Specification and the segment's GUI implementation. Use of non-standard
Structured Query Language (SQL) in database segments is documented and, where applicable,
packaged in a separate database segment.

Level 7: Interoperable Compliance L evel. Segments reuse COE-component segments to ensure
interoperability. These include COE-provided communications interfaces, message parsers,
database segments, track data elements, and logistics services. All access is through published
APIs with documented use of few, if any, private APIs. Segments do not duplicate any
functionality contained in COE-component segments. The data objects contained within a
database segment are standardized according to DOD 8320 guidance.

Level 8: Full DIl Compliance Level. Proposed new functionality is completely integrated into

the system (e.g., makes maximum possible use of COE services) and is available via the Executive
Manager. The segment is fully compliant with theer Interface Specification and uses only

published public APIs. The segment does not duplicate any functionality contained elsewhere in
the system whether as part of the COE or as part of another mission application or database
segment.

Bootstrap Compliance (Level 4) is required before a segment may be submitted to DISA for evaluation as a
prototype. Such segments will not be fielded nor accepted into the online library. At DISA's discretion,
segments which meet the criteria for Minimal DIl Compliance (Level 5) may be accepted into the online
library, and installed at selected sites as prototypes for user evaluation and feedback. Such segments will
not be accepted as fieldable products. Acceptance as dal @A fieldable product requires

demonstration of Interoperable Compliance (Level 7) and a migration strategy to Full DIl Compliance
(Level 8), unless the proposed segment is an interim product that is targeted to be phased out in the near
term.

DIl COE I&RTS: Rev 3.0 July 1997 40

Fundamental COE Concepts

The compliance categories and levels defined here are a natural outcome of devel oping areasonable

approach to migrating legacy systemsinto the COE. Thefirst step of Category 1, covered by Levels 1-4, is

to ensure that systems do not destructively interfere with each other when located on the same LAN.

Level 5 is sometimes called a “federation of systems” in that systems are still maintained as “stovepipes,”
but they can safely share common hardware platform resources. Levels 6-8 complete the approach by
reducing functional duplication, promoting true data sharing, and making the system appear to the user as if
it were developed as a single system. The last three levels represent varying degrees of integration from
marginally @ceptable (Level 6) to a truly integrated system (Level 8). All 8 levels represent a progressively
deeper level of interoperability.

The same compliance levels apply to SHADE databases, as well. The majority of the SHADE issues in
Levels 1-4 are concerned with proper use of the COTS database management systems’ functionality and
with not destructively accessing data belonging to other databases. At Level 5, a database must identify
those components of its schema which are candidates for “sharing.” Levels 6-8 reduce and then eliminate
data sets that are redundant with information in shared and universal segments, including database design
modifications and data migration and cleansing to provide interoperability in both data structure and
content.

Compliance checking is done on a segment-by-segment basis according to the definitions given here and
through the checklist approach in Appendix B. The categories and levels described here are independent of
where the segment fits into the system. That is, the same definitions apply whether the segment is a COE-
component segment or a mission-application segment. However, it is sometimes necessary to compute the
compliance level of a collection of segments. This is callemirposite compliance level. The remaining
subsections below describe how to compute a composite compliance value for an arbitrary group of
segments, for the COE itself, for a COE-based system, and for systems which contain both COE and non-
COE based computing platforms. A composite value is required because otherwise a system is only as
compliant as its least compliant segment and the least compliant segment may be in'fhies&@OEhus,

the intent is to not penalize systems for non-compliant components in the COE itself.

Strictly speaking, discussion of DIl compliance requires qualification with a category name, a compliance
level, and whether compliance is being measured against a segment or a collection of segments. Thus, it is
correct to say that a particular segment is Category 1, Level 4 compliant, but it could be confusing to omit
the qualifier Category 1. Because of widespread usage in the COE community, when a category is not
stated, Categories 1 and 2 are assuthed.

Thel&RTS expressly uses integer values rather than decimals or percentages to state DIl compliance.
Expressing compliance as a percentage is both confusing and misleading. For example, to state that a
segment is 85% Level 6 compliant can be interpreted in many ways. It could mean that 85% of the effort
required to achieve Level 6 compliance has been achieved, or that 85% of the functionality in the system is
85% Level 6 compliant. However, it most likely means only that the segnessiully passe85% of

the Level 6 criteria in Appendix B. Because of the difficulty in precisely interpreting the intended meaning,
only integer compliance values are allowed. Otherwise, it is difficult to quantitatively compare two
segments or systems if both claim to be 85% Level 6 compliant.

18 The COE reference implementation contains software contributed by legacy systems. It may not be cost
effective to expend the effort to achieve full Level 8 compliance for some of these legacy contributions
because they are going to eventually be phased out. In the interim, systems that use these segments should
not be penalized for their lack of compliance.

¥ TheJTA states a requirement for a minimum of Level 5 compliance as does OSD directive. In both cases,
Category 1: Runtime Environment and Category 2: Style Guide are intended. The requirement is levied on
individual segments, and on COE-based systems.

DIl COE I&RTS: Rev 3.0 July 1997 41

Fundamental COE Concepts

2.1.4.1 Compliancefor an Arbitrary Group of Segments

Segments are often grouped together, as in a configuration definition. The composite compliance level for
an arbitrary collection of segmentsis the compliance level for theleast compliant segment.® For example,
suppose a group of four segments have compliance levels of 5, 8, 3, and 8 respectively. Then the composite
compliance level for thisgroup of four segmentsis 3.

This approach to calculating composite compliance level s intentionally places a heavy penalty on groups

that have segments with low compliance levels and gives no “credit” if there are segments with high
compliance levels. An alternative approach would be to average the levels, but because compliance is a
direct measure of interoperability and because artificially increasing the number of segments could have the
misleading effect of boosting the apparent level of compliance, this approach was rejected.

2.1.4.2 Compliancefor the DIl COE

Calculating the compliance level for the COE itself requires computing the composite compliance level for

1) the COE kernel, and 2) for the Infrastructure Services and Common Support Applications layers. As
described in subsection 2.1.4.1, the composite compliance level for each of these two groups of segments is
the level of the least compliant segment in the group.

Let C be the composite compliance level of the COE kernelCLbe the composite compliance level for
the combined Infrastructure Services and Common Support Applications segments. Then the composite
compliance level for the DIl COEZ; ;) is given by the equation

Gii = TRUN(([G + G]/2)
whereTRUNC means to truncate the result to an integer value.

Consider an example. Assume the kernel has three segments with compliance levels 6, 8, and 5. Assume
there are four segments in the Infrastructure Services layer with compliance levels 8, 8, 7, and 4. Lastly,
assume that there are seven segments in the Common Support Applications layer and all are level 8
compliant.

The composite compliance level for the combined Infrastructure Services and Common Support
Applications segments is the compliance level of the least compliant segment (e.g., 4). Thus, the following
gives the composite compliance level for the DIl COE for this example:

G =5
C =4
Csii = TRUNG([5 + 4]/2) = TRUNJ9/2] = 4.

2.1.4.3 Compliance for a COE-Based System

The composite compliance for a COE-based system is computed in a manner similar to that of computing
the compliance for the DIl COE. The approach is to compute the composite compliance level for the
mission-application segments and then factor in the DIl compliance. The computation here is valid only if
every platform in the system is COE-based. If there is a mixture, refer to subsection 2.1.4.4.

Let Cn be the composite compliance level of all the mission applications in the syste®y,.; et the
composite compliance level for the COE computed as described in subsection 2.1.4.2. In c@yputing

% This is how the compliance level for an aggregate segment is measured. (See Chapter 5 for the definition
of an aggregate segment.) The compliance level of an aggregate segment is the compliance level of the
least compliant segment in the aggregate.

DIl COE I&RTS: Rev 3.0 July 1997 42

Fundamental COE Concepts

only those segmentsin the COE that are actually used in the resulting system are considered. Then the
system COE composite compliance level, C, is computed as follows:

If Ga < Cyii, then G
dse G

TRUNC (Cra + Gaii)/ 2],
ROUND[(G + Guii)/ 2]

where ROUND means to round the result to the nearest integer.

As an example, assume that a system has five mission applications with compliance levels of 5, 7, 7, 8, and
8. Assume that the DIl compliance level for the COE segments actually used in the system is 6. Then the
system composite compliance level is

Ca =5
Ciii = 6
C. = TRUNC[(5 + 6)/2] = 5.

If the least compliant segment (level 5) could be improved to reach level 7 with no change in the COE, then
theresulting system compliance level would be increased to 7.

2.1.4.4 Compliancein Mixed Systems

COE-based systems are likdly to be created which include a mixture of COE-based and non-COE based
computing platforms. This may occur for several reasons:

1. because required functionsin the target system have not yet migrated to the COE,

2. because of the need to interface with legacy systemsthat are not COE-based (e.g., mainframe
applications),

3. because the COE isnot presently available on arequired platform, or

4. because the platform is highly specialized and is not appropriate for the COE.

An example of the latter situation isareceiver subsystem that contains dedicated hardware for direct
receiver control. A system built around such componentsislikely to use a platform on which the COE is
available for operator interaction and for receiver tasking, and hence would be a mixed system.

Calculating the system composite compliance for all four situations is done just as with COE-based systems
described in subsection 2.1.4.3. In thefirst situation above, the application that contains the required
functionality can gill be evaluated againgt the compliance checklist and so arrive at a compliance level. The
resulting system compliance level will likely be very low.

Computation of the system composite compliance in the last three situationsis equally straightforward.
Compliance is computed by ignoring the legacy platforms and platforms for which the COE is not
available.

2.1.5 Interoperability of COE-Based Systems

This subsection describes interoperability in the context of the COE, and shows the relationship between

DIl compliance levels and interoperability. But first, it isimportant to distinguish between interfacing,

integration, and interoperability. The threeterms are closaly related and often confused, but they are

distinct concepts. Proper understanding of the interrelationship of these three terms makesiit clear that the

DIl COE is an approach towards integration that goes beyond simple interfacing or “peaceful coexistence”
to true interoperability.

DIl COE I&RTS: Rev 3.0 July 1997 43

Fundamental COE Concepts

2.1.5.1 Interfacing Systems

Interfacing isthe ability of two systems to exchange data, typically by converting data to an agreed-upon
intermediate format. Interfacing should be viewed as one approach towards achieving interoperability, or as
afirst-level approximation of interoperability. For example, military systems frequently interface with one
another by exchange of United States Message Text Format (USMTF) messages. They are able to
“interoperate” to the extent that they can pass meaningful data to one another in an agreed-upon
intermediate USMTF format.

Interfacing provides a limited degree of interoperability but fails to fully satisfy “real-world” operational
requirements. Interfacing

e requires consistent interpretation of the agreed-upon format for data exchange;

e requires systems to stay in synch as the data exchange format changes;

e may resultin loss of precision or other attributes (e.g., one system may process latitude and longitude
only in degrees and minutes, while another system may process latitude and longitude down to decimal
fractions of a second); and

« fails to ensure that applications interpret the exchanged data consistently.

For these reasons, successful “interfacing” is often limited to a specific version of the two systems in
question and may not survive when an upgrade to either system is performed. Also note that standards
profiles specify how interfacing can be accomplished.

2.1.5.2 System and Segment | ntegration

Integration is often used to refer to integratiathin a system obetween systems, or to refer to software
and data integration. Within the context of this document, integration refers to combining segments to
create a system. Segment integration refers to the process of ensuring that segments:

« work correctly within the COE runtime environment;

* do not adversely affect one another;

« conform to the standards and specifications described in this document;
« have been validated by the COE tools; and

* can be installed on top of the COE by the COE installation tools.

Integration requires resolution of compatibility issues between components that are to be interconnected.
Integration attempts to allow sharing of a common resource (such as data) without the need for
intermediate translations from one format to another. Note that the COE is a technique for achieving both
software and data integration; it is the SHADE component of the COE which the technique for assuring
data integration. But the DIl COE goes further because COE/SHADE-type integration for software and
data provides true interoperability as a byproduct. The COE with full SHADE does not create any technical
roadblocks to interfacing, but does strongly encourage a deeper level of integration that promotes true
interoperability.

Integration of a segment with the COE is the responsibility of the segment developer. Government
integrators perform integration of the system as a whole and interoperability testing.

2.1.5.3 Interoperability Levels
In the context of this documeniteroperability refers to the ability of two systems to exchange data:
» with no loss of precision or other attributes,

e in an unambiguous manner,
* in a format understood by and native to both systems, and

DIl COE I&RTS: Rev 3.0 July 1997 44

Fundamental COE Concepts

* insuch away that interpretation of the datais precisaly the same.

There are two significant differences between interoperability and interfacing. The first isthat with

interoperability the exchange of datais performed without the need to trandate to an intermediate format,

such asa USMTF message format. This leads to the second difference in that interoperable systems will

produce exactly the same “answer” in the presence of identical data. Systems that are interfaced will not
necessarily do so because of the potential loss of precision or data in the data exchange.

The concept of interoperability is explored in more detail in a study sponsored by the C4l Surveillance and
Reconnaissance (C4ISR) Integration Task Force Integrated Architectures Panel. The draft document
proposes four levelsof interoperability which are adopted by #8RTS. The four proposed levels are as
follows, listed in decreasing order of interoperability:

Level A: Universal - Virtual C4l System. This level represents the ultimate goal of full
interoperability. Universal interoperability is characterized by the ability to globally share
integrated information in a distributed information space. Another way to view Universal
interoperability is as a way to globally share systems.

Level B: Advanced - Integrated Systems. The Advanced level of interoperability is

characterized by shared data between applications, including shared data displays, and information
exchange through a common data model. This level provides for sharing of information in a
distributed but localized environment and for sharing of applications.

Level C: Intermediate - Distributed Systems. This level is characterized by a client/server
environment with standardized interfaces and distributed computing services that allow for
exchange of heterogeneous data (e.g., maps with overlays, annotated images), and advanced
collaboration. This level of interoperability is achievable with implementation of “cut and paste”
between applications, through World-Wide-Web technology, and through basic use of DIl COE
features.

Level D: Basc - Discrete Systems I nteraction. A primitive level of interoperability

characterized by peer-to-peer connected systems that allows basic exchange of homogenous data
(e.g., email, formatted messages) and allows for basic collaboration. This level of interoperability
is achievable by interfacing techniques described above and by use of standard office automation
products that provide data import/export functions for handling data from another product.

2.1.5.4 Mapping | nter operability and Compliance L evels

Note that progressing from one level of interoperability to a higher one requires a deeper degree of
integration, more commonality in the infrastructure building blocks, and a greater ability to share data and
information. These are precisely the requirements for progressing to deeper levels of DIl compliance, and
can be achieved through the use of COE/SHADE facilities. When two operators are using exactly the same
system, or two systems which are nearly identical, they achieve the highest possible degree of
interoperability. The more software reuse is achieved, the greater the degree of interoperability. Thus, there
is a direct relationship between integration, reuse, DIl compliance levels, and interoperability.

Integration alone does not imply interoperability; it only provides a level of assurance that the system will
work as designed. However, when COE-based systems are integrated together, interoperability is achieved
as a byproduct because common software is used for common functions. The degree to which
interoperability is achievable is dependent upon the degree to which the two systems are DIl-compliant.
Universal Interoperability can only be achieved when systems use exactly the same software to perform

2! The draft document also proposes a mapping betwedi& BiES compliance levels and interoperability
levels. However, the mapping fails to properly account for integration vdestical software is used for
common functions.

DIl COE I&RTS: Rev 3.0 July 1997 45

Fundamental COE Concepts

identical functions and use the same database segments for required data € ements. Implementation of
agreed-upon paper gandardsisnot itsalf sufficient.

Table 2-1 shows a mapping between DIl compliance levels and interoperability levels. Thetransition and
correspondence between levelsis not sharp, as the table suggests because the purpose and focus are
different for the two different types of levels.

DIl Compliance L evels I nter oper ability L evels
1. Standards Basic
2. Network Basic
3. Platform Basic, Intermediate
4. Bootstrap Basic, Intermediate
5. Minima Basic, Intermediate
6. Intermediate Intermediate
7. Interoperable Intermediate, Advanced, Universal
8. Full Advanced, Universal

Table 2-1: Compliance and Interoperability Levels

2.1.6 Principlesfor Selecting COE Components

Selection of the specific software modules that comprise the COE determine which mission domain(s) can
be addressed by a particular COE reference implementation. But selection of COE componentsis not
arbitrary: it isdriven by anumber of important architectural and programmatic principles. First, thereisa
determination of what functions the COE isrequired to perform, then thereis a set of criteriafor selecting
software components which perform the required functions. A function is part of the COE if it meets one or
more of the following criteria

1. Thefunction is part of the minimum software required to establish an operating environment context.
Thisisnormally provided by COTS products and includes the operating system, windowing software,
security software, and networking software.

2. Thefunctionisrequired to establish basic data flow through the sysem. To be useful, a system must
have a means for communicating with the external world. To be efficient, consistent, and robust, a
system must also have standard techniques for managing data flow internal to the system.

3. Thefunctionisrequired to ensureinteroperability. Standards aone cannot guarantee interoperahility,
but using common software for common functions and using shared and universal database segments
with DOD 8320 standard data objects comes much closer. As an example from the GCCS mission
domain, a USMTF message parser is part of the COE because interoperability cannot be achieved if
two different message parsersimplement a different set of assumptions about the USMTF message
specification or use a different specification revision.

4. Thefunction is of such general utility that if rewritten it constitutes appreciable duplicative effort. This
includes printer services, an aerts service for disseminating alerts, and a desktop environment for
launching operator-initiated processes.

Subsections 2.1.1 and 2.1.2 detail the functions currently defined to bein the DIl COE. Thefirg three
criterialisted above are technical in nature because they dictate from an architectura perspective what
software must be contained in the COE for a given mission domain. The fourth criteria, however, ismore
programmatic in nature because it is often atradeoff between the cost of modifying alegacy system to
remove duplication versus the cost of maintaining duplicative code, the cost of potentialy requiring
additional hardware resources because of duplication, and the cost of operator training when there are

DIl COE I&RTS: Rev 3.0 July 1997 46

Fundamental COE Concepts

different ways to accomplish the same action. DIl compliance requires that there be no duplication of
functionsin thefirst three criteria but some flexibility is possible for the fourth.

There are two frequently voiced concerns about COE services:

1. if amodule becomes part of the COE, it cannot be easily changed or customized; and
2. thelarger the COE is, the moreinflexible and the poorer the performance of the resulting system.

Thefirgt statement is partially true and is so by design. It is essential to perform careful configuration

management of COE components, and they must be changed only in a controlled way in response to

formally reported problems. Stability of the COE is crucia to the system, so modifications must be done

carefully, deliberately, and at a dower pace than changes in non-COE routines. But just because changes

are controlled does not mean that the COE routines cannot be customized. Ongoing work in the COE isto

devise and refine techniques to “open up the architecture” to allow applications to customize COE
components in ways that do not violate COE principles and do not adversely impact other developers using
COE services.

The second statement is a misunderstanding of the COE architecture and concept. Unlike many systems,
the COE is not designed as a single monolithic process, but is instead designed as a collection of relatively
small processes. While a small number of these are loaded into memory as background processes, most are
loaded into memory on demand in response to operator actions (e.g., edit a file, display a parts inventory)
and only for the amount of time required for them to perform their task. This approach offers considerable
flexibility because it limits the number of background processes required. Except for cases where segments
require adding new background processes, adding new segments does not adversely impact performance.
The price paid is a small amount of overhead required to load functions on demand, but this is generally
negligible because the overhead is small and comes usually in response to an operator request to bring up a
display that must respond only at human speeds.

A COE-component segment is not necessarily installed on every target platform or as part of every COE-
based system. A COE-component segment can be omitted from the system or installation if:

« Any remaining COE-component segments do not require the functionality provided by the segment.
For example, the COE provides a humber of message parsers for processing military message formats.
But systems such as ECPN have no need to handle military message formats and therefore such parsers
need not be included in the ECPN system. However, in many cases there is no real advantage to
deleting a COE-component segment because it will not be activated unless required and the amount of
disk space taken up is small. Eliminating the function will increase the burden of configuration
management problems more than leaving the function in the system.

e Thefunctionality provided by the segment is not required by any remaining COE-component segments.
Selection of certain functions within the COE automatically dictates the inclusion of segments on
which those functions depend. This is not the same as saying that the COE is not modular. On the
contrary, it is an observation that inclusion of a higher-level function requires inclusion of all lower-
level routines used to build the function. This is a direct consequence of modularity, not a
contravention.

e Thefunctionality provided by the COE segment is not duplicated by another segment. A common
pitfall to avoid is omitting a COE component because its functionality is available through some other
means. The problem with this approach is that a common “look and feel” and consistent operation are
no longer preserved between applications, and interoperability may be reduced.

Omission of COE-component segments that are not required is done automatically by the COE installation
software.

DIl COE I&RTS: Rev 3.0 July 1997 47

Account Groups and Profiles

2.2 Account Groups and Profiles

In atypical operating system, usersare assigned individual login accounts. Configuration files are created

to establish user preferences and a runtime environment context. In the UNIX operating system,

configuration files (for example, . cshr c) establish the runtime environment context for the user. COTS

products such as CDE also have configuration files that contribute to the runtime environment context as

well. These configuration files must be set up and established for each user of the system. The COE

provides standard versions of the required “dot” files. These should be used when creating account groups
because they standardize the operation of the system across all account groups, and because the COE-
provided files demonstrate how to support dynamic profile switching.

An account group segment is a template used within the COE for setting up individual login accounts and a
required runtime environment context. Account groups contain template files for specifying items such as
the functions to be made available to operators and global default preferences such as color selections for
window borderg? Account groups are described further in Chapter 5 of this document.

Account groups can also be used to perform a first-level division of operators according to how they will
use the system. This technique is used in the COE to identify at least five distinct account groups:

e Privileged Operator (e.g., root) Accounts,
e System Administrator Accounts,

e Security Administrator Accounts,

e Database Administrator Accounts, and

* Non-Privileged Operator Accounts.

Other account groups may exist for specialized system requirements, such as providing a character-based
interface, but all account groups follow the same rules. Within an account group, subsets of the available
functionality can be created. These subsets are qalbéites. An operator may participate in multiple

account groups with multiple profiles, and can switch from one profile to another without the need to log
out and log in again. An operator may also select multiple actives profiles to provide an operational
environment from a collection of account groups. For example, assuming the operator has appropriate
permissions, an operator may combine a profile based on the System Administrator account group with a
profile based on a Database Administrator account group.

Figure 2-6 shows the hierarchical relationship among account groups, profiles, and individual users. It is
intended to convey several points.

« Multiple profiles may be assigned to an account group, but a particular profile may be assigned to only
one account group. Assuming the operator has proper permissions, multiple profiles may be selected at
one time to give the operator features from multiple account groups at the same time.

« Multiple operators may be assigned to the same profile. For example, operator Op4 and operator Opn
are shown assigned to the same profile within the Non-Privileged Operator account group.

e Operators may be assigned to multiple profiles either within the same account group, or across account
groups. Opn is assigned to three profiles within the Non-Privileged Operator account group. Op3 is
assigned to a profile in the System Admin, Security Admin, and Database Admin account groups.

* Not only can an operator be assigned to multiple profiles, but multiple profiles may be active at a time.
The operator may switch between profiles without the need to log in and out. (Optionally, a system can
be configured to permit a single profile at one time.)

%2 The user may modify preferences, but the Account Group establishes the initial, default settings.

DIl COE I&RTS: Rev 3.0 July 1997 48

Account Groups and Profiles

* The COE alows profilesto be locked. That is, if Op4 and Opn are assigned to the same set of profiles,
the system can be configured so that if Op4 isin a specific profile first, then Opn islocked out from
using that profile until Op4 isno longer using it.

System (GCCS,GCSS, ECPN, etc.)

System Security Database Non-Privileged Account

r oot Admin Admin Admin Operator Groups
Profiles Profiles Profiles Profiles Sets of
Profiles

Opl Op2 Op3 Op4 Opn Operators

Figure 2-6: Account Groups, Profiles, and Users

2.2.1 Privileged User Accounts

Most operating systems provide a privileged “super user” account. Both UNIX and Windows NT have the
concept of a privileged account. Privileged accounts are normally restricted to knowledgeable systems
administrators because serious damage can be done to the system if they are used improperly. Security
requirements also dictate careful control and auditing of actions performed when operating as a privileged
user.

The COE design philosophy is to not require the use of a privileged user account for normal operator
activities. Certain processes cannot be performed without superuser privileges, but such privileges should
be given to the process, not the user, and only for the period ofeétassary to perform the required

action. Root-level access neaat be provided to the user for such actions: indeed, it should not be

provided.

Normal operation does not require a command-line-level access, especially to root. Commamddse a

for any COE segment is expressly prohibited unless the DISA DIl COE Chief Engineer grants prior
approval. However, a privileged user account is preserved in the system for use by trusted processes, for
unusual system administration tasks or installations, and for abnormal situations where “all else fails.”

2.2.2 Security Administrator Accounts

Security in the COE is implemented through a collection of security services and trusted applications. One
such trusted application is the Security Administrator application that allows a Security Administrator to
monitor and manage security. Precise functionality of the Security Services provided is vendor-dependent
because vendors have taken different approaches. Security features in Windows NT and UNIX are
significantly different, but even within UNIX, security features vary considerably from one vendor to
another.

DIl COE I&RTS: Rev 3.0 July 1997 49

Account Groups and Profiles

The Security Services are loaded as part of the COE kernd. (The precise sequence for loading security
softwareis vendor-dependent.) The Security Administrator application is designed to be made available to
only arestricted group of operators. Available functions include the following:

* Ability to create individual login accounts

* Ability to create defined operator profiles, including granting database privileges as established by the
Database Administrator (DBA)

* Ability to create/modify database user accounts

* Ability to assign read, write, and modify data permissions

« Ability to customize menus by operator profile.

2.2.3 System Administrator Accounts

The System Administrator Account Group is a specialized collection of functions that allow an operator to
perform routine maintenance operations. This software is designed to be made available to arestricted
group of operators. It isloaded as part of the COE kernel because it contains the software required to load
segments. Functionality provided includes:

Ability to format floppy disks

Ability to ingall and to remove segments
Ability to set platform name and | P address
Ability to ingall and configure printers
Ability to create and to restore backup tapes
Ability to shutdown and to reboot the system
Ability to configure network host tables
Ability to configure and manage the network.

2.2.4 Database Administrator Accounts

The Database Administrator Account Group is to be used by those individual sresponsible for performing
routine database maintenance activities such as backups, archives, and reloads. The specific capabilitiesare
dependent upon which commercia relational database software isin use and upon tools provided with
these commercial products.

Functionsincluded within this account group are:

Ability to archive and restore database tables

Ability to import and export database entries

Ability to create/modify database user accounts
Ability to checkpoint and journal database transactions.

Note: User account management is normally done as part of a Security
Administrator account. However, the COE provides the ability to
modify the database portion of already created user accounts via
the Database Administrator accounts as well. Only those user
account items related to database administration can be modified
by the database administrator.

2.2.5 Operator Accounts

Most operatorswill not require, nor will site administrators grant access to, capabilities described in the
previous subsections. Most system users will be performing mission-specific tasks such as creating and

DIl COE I&RTS: Rev 3.0 July 1997 50

Account Groups and Profiles

disseminating Air Tasking Orders (ATOs), preparing briefing slides, performing ad hoc queries of the
database, participating in collaborative planning, etc. The precise features available depend upon which
mission-application segments have been loaded and the profile assigned to the operator.

2.2.6 Character-Based | nterface Accounts

Certain legacy systems require the ability to provide a character-based interface to the user. Thisis
typically required for remote users where the communi cations bandwidth is too low to support a GUI-based
application or because the user’s hardware does not support graphics (e.g., VT100 terminals).

The COE provides a character-based account group for such situations. These may have profiles defined
just as with any other account group. When the user logs in, a menu of options, such as

0) Exit
1) AdHoc Query
2) TPFDD Edit

Enter Option:
is presented to the user.
Character-based account groups are restricted in the sense that a user account is either character-based or it
is not. If an operator has access to a terminal that supports a GUI interface and to another that does not, the

operator must have two separate login accounts: one which uses character-based profiles and one which
does not.

DIl COE I&RTS: Rev 3.0 July 1997 51

Site Configurations

2.3 Site Configurations

Figure 2-7 isasimplified notional LAN diagram for atypical COE-based system. The architecture consists
of a 3-tier client/server environment incorporating data servers, application servers, and platforms
interconnected on a LAN/WAN. The division shown separates data (data servers), functions (application
servers), and presentation (platform). System components are interconnected on a LAN/WAN through
direct connection to a LAN, through subnets connected over routers, through dedicated lines, or via dial-up
through a communications server. Cryptol ogic equipment may be installed to secure communications over
non-secure lines as shown. Remotes with limited bandwidth will not generally have access to the complete
suite of mission applications availableto local users.

Data Server
Y BTN Applications
=|'|||||||||||||||m Server
1] —
W L
0 o o
- Comms Backbone LAN
TT Server
— R
- [Applications
i bz
< e Server
/ T ! -
- 3 =

Remote
— " &

y | >
® Router 5 Windows Workstations

X kemux ™1 unix workstations

Figure 2-7: DIl Notional LAN Architecture

In atypical installation, there will be one or more database servers and several application servers. The
database server istherepository for all databases and may be replicated at strategic placesin the LAN
architecture to improve performance and to balance loading. COE services ensure that replicated databases
stay synchronized.

A typical ingallation will often include other serversthat are not shown in the diagram. A Web server
connected to the outside world through afirewall allows sites to take advantage of Web technol ogies for

DIl COE I&RTS: Rev 3.0 July 1997 52

Site Configurations

collaborative planning purposes. As described in alater chapter, the COE also provides facilities that allow
developersto create applications that use the Web for accessing applications and data.

Network management is greatly simplified if a domain name server iscreated and if thereisa server for
management of user accounts and profiles. Segment ingtallation is simplified by designating serversto load
platforms across the LAN rather than individually from magnetic media. This approach also simplifies
software distribution because when software updates are received, they can be tested in isolation, then
|oaded onto a segment server for distribution to affected platforms. Combined with configuration
definitions, the COE provides powerful tools for managing software installation and distribution.

The COE supports both “network-centric” and “platform-centric’ LAN management. Network-centric

refers to the ability to centrally manage network resources (e.g., user accounts, profiles, software
installation). In keeping with COE principles, centralized management can be done from any platform
(subject to security considerations) with infrastructure services responsible for effecting the changes across
the network. Platform-centric refers to the ability to distribute network management. The choice of
centralized versus distributed is a preference which may vary across distributions or sites.

DIl COE I&RTS: Rev 3.0 July 1997 53

Installing COE-Based Systems

2.4 Installing COE-Based Systems

Figure 2-8 isanctional depiction of the ingallation process. (It should not be interpreted too literally since
vendor-specific loading instructions may require slight alterationsin the loading sequence shown.) First,

the operating system, windowing environment, and any necessary patches are |oaded as per vendor

instructions. Then, the COE Security Administration software and System Administration software are

copied onto disk with the equivalent of a UNIX “tar” command. The segment installation tool is copied

onto disk as part of installing the System Administration software and installation of the System
Administration software is done in such a way as to also create a System Administrator operator account.
This completes installation of the COE kernel. Next, the operator logs in as a system administrator, invokes
the segment installation tool, and selects the remaining COE segments for installation. Finally, any
remaining mission-specific segments are selected and loaded.

This installation approach has several advantages. It greatly simplifies the installation process by handling
all vendor-unique issues first (e.g., loading the operating system and patches). It guarantees a standard,
known starting configuration for all platforms regardless of how they will be used. It allows all remaining
segments to be loaded in a standard way regardless of the hardware platform or mission application, thus
simplifying system administration. Through the COE, it allows segments to extend the base environment as
required as they are loaded.

Figure 2-8 describes the general flow for installing a system, which can be accomplished in either a “pull”
or a “push® mode. In pull mode, installation is done locally from the target platform. In push mode,
installation is performed remotely onto the target platform from a different platform.

Installation may be accomplished in several ways:

» directly from distribution media (e.g., tape, CDROM),

* locally from distribution media mounted on a different platform,

e across the network from a segment server, or

» through a Web browser interface from a centralized segment server.

The distribution media and servers may contain executables for multiple hardware platforms. The segment
installation tool ensures that only those executables which are compatible with the target platform (e.g.,
NT, Solaris, Digital Equipment Corporation [DEC]) are selectable and hence installable.

% |nstallation in a “push” mode requires that the COE kernel already be installed on the target machine and
that the target machine already be accessible from the network.

DIl COE I&RTS: Rev 3.0 July 1997 54

Installing COE-Based Systems

‘Ingtall OS [— — — — — — — — —

Y

I
I
I
“Install Windowing Environment I
I
I
|

Y

*Install OS & Windows Patches COE Kernd

I

Y |

I

Install Security & System Admin /W <— — — |
(via “tar” command or equivalent)

Y

Login as System Administrator

Y

Install Remaining COE segments
(via Segment Installer tool)

Y

Install Other Segments

(via Segment Installer tool by ~ Remainin <em
selecting Configuration Definitions < 95

or individual segments)

Figure 2-8: Installing a COE-Based System

" Vendor -Specific Instructions

DIl COE I&RTS: Rev 3.0 July 1997

Development Process Over view

2.5 Supported Configurations

The DIl COE is an open architecture and as such isnot tied to a specific hardware platform. It uses POSIX-
compliant operating systems and industry standards such as X Windows, Motif, and NT. In actua practice,
POSIX compliance and industry standards have not progressed to the point where verification that software
works in one hardware/software configuration is a guarantee that it will work in another. COTS vendors do

not necessarily provide backwards compatibility with subsequent releases, and in fact much of the effort
consumed in porting the COE from one configuration to another isto account for lack of compatibility

between vendors or between vendor rel eases. Thus, what hardware/software configurations to support is

more an issue of testing and life-cycle maintenance than it is one of “openness” or software portability.

COE reference implementations exist for a number of platforms. The list of supported hardware and
software components is growing as the COE and COE-based systems evolve to meet operational
requirements. Appendix A lists the current DISA-supported COE configurations. It also describes a DISA
“self-certification” program that allows vendors or servicest®ive copies of the COE kernel in order to
port it to platforms or operating systems not currently supported by DISA. DISA will test the ported kernel
to ensure it meets COE requirements and will issue a certification for the specific platform. Responsibility
for supporting the ported COE on the new platform is the responsibility of the vendor/service that has
funded the effort.

Appendix A will be updated as required to reflect new hardware/software configurations. Note that not all
of the COTS products listed in Appendix A are part of the COE kernel and thus are not required for every
platform. Refer to the DISA DIl COE Chief Engineer for requirements for other platform or COTS
software versions, or for an updated list of supported vendor products.

Specifying precise hardware requirements in terms of memory, disk space, etc. is a function of whether the
platform is a shared data server, an application server, or a client platform, and whether the platform is
standalone or on a network with other COE-based platforms. Consult the DISA DIl COE Chief Engineer
for hardware configuration options.

3. Development Process Overview

This chapter describes the development process in more detail. A powerful feature of the overall
development process is the concept of “automated integration.” Automated integration means that
automated tools are used to combine and load segments, make environmental modifications requested by
segments, make newly loaded segments available to authorized users, and identify places where segments
conflict with each other. Traditional system integration then becomes primarily a task of loading and

testing segments, although traditional functional testing must still be performed to ensure interoperability
and performance of the resulting system. Automated integration has the advantage that traditional
integration tasks are pushed as far down to the developer level as possible, and then validated as system
integration is performed.

Prior to submitting a component to DISA, a developer must

* package the component as a segment,

« demonstrate DIl compliance through tools and checklists,
« test the segment in isolation with the COE,

e provide required segment documentation, and

« demonstrate the segment operating within the COE.

The DISA DIl COE Software Support Activity (SSA) enters the segment into the online library for
configuration management purposes and confirms DIl compliance by running the same suite of tools as the
developer. The SSA then tests interaction between segments and the impact on performance, memory

DIl COE I&RTS: Rev 3.0 July 1997 56

Development Process Over view

utilization, etc. Since segmentstypically can only interact through the COE, thetask is greatly simplified
and the need for human intervention in the process is minimized.

An automated integration approach is a practical necessity. Not only do different services and agencies
contribute segments, but individual segments are created by alarge body of different devel opers.
Traditiond integration approachesrapidly break down with the need to communicate to such alarge
number of people while the costs incurred to resolve inter-module conflicts at system integration time
become prohihitive.

This chapter begins with a consistent approach to version numbering, followed by a detailed look at the
development phases. The chapter ends with some special considerations for how to migrate legacy systems
rather than devel oping from scratch. Because of the special importance of the online library, Chapter 10is
devoted to it and its features. For the present chapter, it is sufficient to note that thereis a configuration
management repository for segments.

Note: Integration and testing of a segment within the COE, and DIl
compliance are the responsibility of the segment developer.
Government directed integrators verify DIl compliance, integrate
the system as awhole, and perform interoperability testing.

3.1 Version Numbering

The COE concept requires the ability for segments to state dependencies upon or conflicts with other
segments. At least four types of segment dependencies/conflicts can exist.

1. Onesegment may requirethat another segment also be loaded in order to operate.

2. One segment may require another, but the dependency is version-specific.

3. One segment may have a conflict with another segment so that both cannot be present in the system at
the same time.

4. One segment may have a conflict with another, but the conflict may be version-specific.

A consistent approach to version numbering is thus a mandated feature of the COE standard o that the
COE todls can detect and enforce segment dependencies, and can detect and avoid segment conflicts.
Version numbers are applied to al segments and all segment patches.

COE-based systems consist of a collection of segments, each with its own individual version number.
When a version number is applied to a COE-based system, the version number refersto the entire system as
awhale, not the verson for each individual mission application or segment, or for the COE version. While
this may seem confusing at first, it isa practical necessity and is consistent with commercia practice. For
example, onerefersto the version of Microsoft Windows (analogous to the DIl COE) aswell as individual
applications like Word or Excel (anaogous to mission applications like GCCS Status of Resources and
Training System [GSORTS] or to COT S products like Netscape). Microsoft packages several of their office
automation productsinto Microsoft Office (analogous to GCCS) and gives the collection a version number,
even though it is composed of individua products, each having its own version number. The Microsoft
Office package is advertised as requiring a specific version of Windows to operate.

DIl compliance mandates adherence to the version numbering scheme outlined in this section. Version

numbers are frequently tied to the signature level required to authorize a product release. Hence they have
programmatic importance as well as technical importance for distinguishing between segment upgrades.

3.1.1 Segment Version Numbers

Segment version numbers consist of a sequence of 4 integers, separated by decimal points, in the form

DIl COE I&RTS: Rev 3.0 July 1997 57

Version Numbering

ab.cd

where each of the integers has a specific meaning. Thefirst integer isamajor release number and indicates
a significant changein the architecture or operation of the segment. Compatibility libraries will be provided
if necessary to preserve backwards compatibility. The second integer indicates a minor release in which
new features are added to the segment, but the fundamental segment architecture remains unchanged. A
minor release may necessitate relinking to take advantage of updated API libraries, but APIs are preserved
at the source code level except possibly on a documented basis with the explicit approval of the DISA
CCB. Thethird integer is a maintenance release number. New features may be added to the segment, but
the emphasisis on optimizations, feature enhancements, or modifications to improve stability and usability.
APIs are preserved and do not generaly require segmentsto recompile or relink during successive rel eases.
The fourth integer is adeveloper release number.

For COE segments, the first three integers are assigned by DISA. For mission-application segmentsin a
COE-based system such as GCCS, the program manager assignsthe first three integers. In both cases, the
fina integer isreserved for devel opers. The fourth integer is updated to keep track of successive releases
during the integration process.

Version number integers are always incremented, never decremented, to indicate later releases of a
segment. This scheme provides areadily apparent method of comparing successive rel eases of a segment.
For example, a segment with version number 2.1.6.1 isanewer version than 2.1.0.5. Moreover, according
to the scheme outlined, APIs are preserved. Segments using version 2.1.0.5 can usually be expected to
work without any modification when loaded on a system using the 2.1.6.1 version.

When specifying version dependencies, this scheme also all ows segments to indicate the degree to which
they are version sensitive. For example, suppose Segment A requires use of Segment B. Segment A may
indicate that it requires Segment B, version 2.3 indicating that any maintenance release of version 2.3 (e.g.,
2.3.2.0, 2.3.1.2) is acceptable. The same approach works for specifying segment conflicts.

Note: Itisaviolation of the COE to fail to increment version numbers
between subsequent segment releases. This applies to all
segments whether they are COTS segments, COE-component
segments, or mission-application segments. This requirement to
update version numbers between subsequent releases is a matter
of good Configuration Management practice.

3.1.2 COTSVersion Numbers

COTS products will typically already have version numbers assigned to them, but the convention used is
vendor-specific. Thismakesiit difficult to make meaningful version comparisons in the same senseasin the
previous subsection. A further complication is that COTS products must often be configured before they
can be properly utilized in a COE-based system. For thisreason, COTS segments are also assigned version
numbers.

A COTSversion number consists of a primary and secondary version number separated by the /'

character. The primary version number follows the same convention described in the previous subsection,
while the secondary version number is the version number assigned by the vendor and can be any
alphanumeric string. Comparisons and dependency specifications are always performauyutieg

primary version nhumber. Secondary version numbers should be specified because they may be used for
other purposes such as supporting automated license management.

For example, the DIl COE requires an increase in the amount of shared memory configured in the vendor-
supplied Solaris 2.5 UNIX Operating System. A primary version humber, such as 2.1.3.6, is assigned so

DIl COE I&RTS: Rev 3.0 July 1997 58

Version Numbering

that the operating system isreferred to asversion 2.1.3.6/SOL-2.5. Similarly, the X11R5 version of an
X Windows server might have a version number assigned such as 2.3.0.4/X11R5.

COE-based systems are presently composed of segments contributed from ongoing programs that may
already have an established convention for version numbering. A secondary version number may also be
attached to such segments. Aswith COTS segments, only the primary version number is actually used
within the COE.

3.1.3 Patch Version Numbers

Patches™ are indicated by appending the letter ‘P’ and a single number to the primary version number. For
example, patch 12 to version 2.1.3.5 of a segment would be designated as version 2.1.3.5P12. Patch 4 to the
Solaris Operating System example in the previous subsection would be designated as 2.1.3.6P4/SOL-2.5.

3.1.4 COE Version Number

The DIl COE itself is composed of a collection of segments. Each of these has its own version number, but
it is convenient to track the COE as a single entity. For this reason, DISA assigns a single versidi number
to refer to a specific release of the collection of segments in the COE. Mission applications may thus state
dependencies on the COE as a whole rather than individual segments within the COE.

It is possible that some mission applications need to state a dependency on a particular segment within the
COE. This should normally not be required, but is permitted.

3.1.5 System Version Number

A COE-based system is comprised of COE segments, and mission-application segments. Each of these
segments will have their own individual version, but it is usually more convenient to the end user to view

the system as a whole rather than as a collection of individual pieces. Thus, it is advisable to assign a single
version number to the whole to refer to the system rather than confusing the end user with a list of
segments and their associated version numbers. Identification of the system version number is the
responsibility of the cognizant DOD program manager. It is also the responsibility of the cognizant DOD
program manager to track the track the segment versions that are to be associated with a particular system
release. The version number should be that identified in the main operator account group (e.g., GCCS,
ECPN, GCSS).

For example, suppose that the system GCCS, version 3.2, is to be comprised of the following segments or
groups of segments:

DIl COE, version 4.0

JOPES, version 3.2.1

GSORTS, version 5.6.3.2

Scheduling and Movement (S&M), version 1.0.3

Then the cognizant DOD program manager should

1. enter “3.2.0.0” as the version number in the GCCS account group (see Chapter 5 for more information
on account groups and how to enter a version number); and

2+ A patch in this context is the total replacement of one or more files, not the replacement of a subset of a
file or a section of memory. The files being replaced may be software or data.

% The version number of the COE must not be confused with the version numberl &RTiSdocument.

The two are not related. One is the version number of a delivered software product while the other is the
version number of a specification document.

DIl COE I&RTS: Rev 3.0 July 1997 59

Version Numbering

2. inaccordance with good Configuration Management practices, maintain alist of the exact segments
and versions that comprise this GCCS system release.

Note: The COE provides an environment variable, COE_SYS_ NAME,
that the account group must set to provide the system name. See
Chapter 5 for more details.

3.1.6 Configuration Definition Version Numbers

As described in Chapter 2, the COE provides configuration definitions to simplify management and

installation of COE-based systems. Version numbers should also be assigned to properly track changes to
configuration definitions. Refer to the appropriate programmer’s guide for details on assigning version
numbers to configuration definitions.

DIl COE I&RTS: Rev 3.0 July 1997 60

Process Flowchart

3.2 Process Flowchart

Figure 3-1 isarepresentative flowchart of the devel opment process, beginning with registering a segment
to be devel oped and ending with ultimately installing the segment at an operational site. The major
development phases are delineated by dashed lines in the figure and correspond to the subsections that
follow. This process flow isthe same for all segments, including patch segments. As can be seen, the
process isindeed largely automated.

By necessity, thefigureis abbreviated and does not show several key e ements of the development process
such as error tracking and reporting, a configuration control board, DISA architecture groups, or
configuration management and quality assurance. Each of the elementsis strongly implied by Figure 3-1,
but their description is beyond the scope of this document. Contact the DIl COE Chief Engineer for more
information on related elementsin the devel opment process.

At several placesin Figure 3-1, segments are added to the online library. Segments are compressed and
encrypted to reduce disk space and for added security. Segments are al so encrypted and compressed when
they are transmitted el ectronically across the network. These actions are performed automatically and are
transparent to the user.

While electronic transmission of segments across the network isthe preferred approach, it isnot possiblein
certain cases. It isnot practical to transmit the operating system, X Windows, or Motif across the network
dueto licensing restrictions and their size. Other segments, especially the data segments providing fill for
database segments, may be too large to send electronically or may have a security classification that
requires specia handling and tracking. Figure 3-1 should be understood with thisin mind. Electronic
transfer is performed when feasible, but an aternate route using tape or other mediais used as well when
required.

Figure 3-1 also shows several places, especially in the Segment Submission phase, where a “Notify” action
occurs. This is an electronic notification of status to the segment developer, to the development community,
or to the user community. The subsections below describe notifications in more detail, but obviously
notifications of status are sent only to the cognizant parties, not necessarily to the entire community.
Notification is accomplished by emaiyWW, newsgroups, or “paper” as appropriate.

The very nature of COE-based systems dictates that security measures be taken to prevent unauthorized
disclosure or access to sensitive information, including project status or system problem reports. For this
reason, access to software and project information is divided between Internet and SIPRNET with firewalls
to restrict access. This level of detail is net@ssary for the overview presented in this chapter and has

been omitted from Figure 3-1.

DIl COE I&RTS: Rev 3.0 July 1997 61

Process Flowchart

Segment
Registration

Segment

Development

Register Segment

Y

Online
Repository

| Download Segments

Load & Config COE

No

Yes

M akel nstall

Test Seg APIs

Segment

Sibmision

Write & Unit
Test Code

Y

Create Segment
Structures

submit

| TestR

emove |

Figure 3-1: Development Process Overview

DIl COE I&RTS: Rev 3.0

July 1997

62

Process Flowchart

Online
Repository
Segment (-
Accepted _>\ _
Notify Received Notify Accepted
_) ment
Notify Online |Sr?gtallation
Reected Repository
Online
Repostory ["create Digtrib Remote
Submit to CM O Media Install
Online Repository ’

> ;|' Notify Submitted

Test Advance

—

Create Config
Definition

Fail

a0

Notify Pass & ComplianceL evel

Operational
Test Seg Site
In Isolation
Fail @
Notify
?
Results? Rejected
| Assign Compliance Level
Online

Repository
O

Figure 3-1: Development Process Overview (cont.)

DIl COE I&RTS: Rev 3.0

July 1997

63

Process Flowchart

The remaining subsections discuss the process overview in detail. The flow is the same for software
segments and for database segments, but there are some additional nuances for database segments. Thus,
subsection 3.2.1 describes the process regardless of segment type, while subsection 3.2.2 has additional
information for database segments.

3.2.1 Processes Applicableto All Segments

Segment development is straightforward. It essentially requires registering the segment to make sure it will
not conflict with other segment devel opers, create the code, structure the product as a segment, and then
test it.

The processin Figure 3-1 isa generic flowchart for any type of segment. The I&RTSrequires that all COE-
component segments be submitted to the DISA DIl COE SSA for test and configuration management.
Mission-application segments must be submitted to the SSA identified by the cognizant DOD program
manager. DISA requires all mission-application segments for DISA Joint Interoperability and
Engineering Organization (JEO) systems (e.g., GCCS, GCSS, ECPN) to be submitted to the same SSA as
for COE-component segments.

3.2.1.1 Segment Registration

Segment Registration isthe entry point into the devel opment process. Its purposeis to collect information
about the segment for publication in a segment catalog. Perhaps the most difficult part of maintaining a
software repository is simply knowing what capabilities exist. Thisisthe purpose of maintaining aDI|
segment catal og. The segment catal og is available online through a Hyper Text Markup Language (HTML)
browser and contains information provided by developers in a segment registration form. Keyword
searches can be performed on the catal og by devel opers to identify reusable segments or by operationa
sites to find new mission applications.

The segment registration form includes, but isnot limited to, the following information:

* segment name

e segment prefix

e segment directory name

* segment type (software, data, COE component, etc.)

e system resources (e.g., port assignments, UlDs requested, RPC addresses requested)
* estimated memory required by the segment

e estimated disk storage requirements

« list of boot and background processes (see Chapter 5)

* releasability restrictions (especially export restrictions)

» platform availability (PC only, Solaris only, etc.)

e short paragraph describing the segment features

* unclassified picture of the segment’s user interface (GIF, JPEG, or X11 Bitmap format).
» authorization keys (assigned by DISA)

« list of related segments

« list of keywords for use in catalog searches

e program management point of contact

% Program managers who do not elect to use the DISA DIl COE SSA for their mission applications must
coordinate with DISA to ensure that there are no conflicts between their mission-application segments and
COE-component segments. If the DIl COE SSA is not used, it is the program manager’s responsibility to
ensure that there are no conflicts with mission applications from other program managers. Since DISA uses
a centralized SSA for all DISA JIEO systems, the DIl COE SSA manages conflicts between programs (e.g.,
ECPN, GCSS, GCCS).

DIl COE I&RTS: Rev 3.0 July 1997 64

Process Flowchart

e technica point of contact
e process point of contact

The segment name can be any character string that is unique among al segments. Segment names for
COTS products should usually not include the vendor’s name since this will make any segments that
depend upon the product vendor-specific. That is, a segment name such as

Company A DCE

is inappropriate because segments that are dependent upon DCE will have to have their dependencies
changed if a different vendor is chosen to supply DCE. Refer to Chapter 5 for specific rules regarding
selection of a segment name.

Each segment is assigned an identifier callsayaent prefix. The segment prefix is a 1-6 alphanumeric
character string that is used to prevent naming conflicts between segments. Use of the segment prefix is
required in any situation where there is plossibility that two different segment developers might choose
the same name for a public symbol such as an environment variable, executable, API, or library. Two
segments may in fact have the same segment prefix as long as tioguessbility that public symbols

will conflict. This is realistic only if one developer creates both segments.

Segment directory names are often the same as the segment prefix, but they do not have to be. Segment
directory names can be any name that conforms to rules imposed by the target operating system, provided
they consist only of printabffecharacters, begin with an alphanumeric character, does not end in a blank,
and are not already in use by another segment. It is recommended that directory names be limited to 14
characters to avoid porting problems. Refer to Chapter 5 for a specific discussion of how segment name,
segment prefix, and segment directory name are used to uniquely identify a segment.

Note: The COE stipulates the same requirements for choosing directory
names and filenames as are stipulated for segment directories,
except that uniqueness is required only of the segment directory
name.

At segment registration time, system resources must be identified. These include estimates of memory and
disk requirements. System resources that must be shared and coordinated among other segments must also
be identified. These include shared memory estimates, port assignmentef{egser vi ces entries,

reserved UIDs), and any other resources that might cause conflicts between segments.

Some segments need access to certain restricted privileges provided by the COE. For example, some
segments need to have root privileges to be properly installed. Also, authorization must be granted by

DISA before a COE-component segment can be created. When such specialized requests are received and
authorization is given by DISA, the DIl COE SSA will give the requesting segment developer one or more
authorization keys. Unless these keys are provided with the segment, the COE tools will refuse to honor
requests for restricted services.

Not all information provided at segment registration time is made available to the community at large. The
technical point of contact is available only to the DISA Engineering Office in the event that technical
questions or issues arise during segment integrationprboess point of contact is the individual

authorized by the segment program manager to actually submit the segmesteivioatus information

and notifications. Therogram management point of contact is the only individual authorized to commit
schedule or resources and is the only individual authorized to release information about the segment to the
community at large. The three points of contact are selected by the service/agency responsible for the

" Some operating systems allow “.” to separate file extensions from filename. Some allow hyphens and
underscores. Thus, the COE requires only that the flename be printable, and not begin or end with a blank
character.

DIl COE I&RTS: Rev 3.0 July 1997 65

Process Flowchart

segment. Services may elect to designate a singleindividual for all three points of contact, and may include
an alternate point of contact for each category.

Referring to Figure 3-1, two steps constitute the Segment Registration phase:

1. Register the segment. The segment registration form can be submitted in written form, through email,
or in HTML format. Appendix E contains more information on how to do this. Once the devel oper
submits the registration form, the information is entered into the online repository and confirmation is
sent to the process point of contact. Segment information is entered into the segment catalog with a
tentative rel ease date for the segment. The segment prefix and directory requested will be granted
unless they have already been assigned to another developer’s segment.

2. Download segments required for development. When natification iseceived that segment registration
was successful, developers may download COE-component segments, developer toolkits, object code
libraries, and other segments required for software development. Appendix D provides more
information on how to download segments, tools, libraries, etc. It also provides information on how to
access and search the online segment catalog.

3.2.1.2 Segment Development

The COE approach is designed to be non-intrusive; it places minimal constraints on how developers build,
test, and manage software development. Developers are free to establish a software development
environment that is best suited for their project. The COE specifies no particular programming language
because it is only concerned with handling the resulting executable, not the process or language used to
create it. The COE requires only that deliveries be packaged as segments, that segments be validated before
submission, and that segments be tested in the COE prior to submission. Figure 3-1 assumes this degree of
freedom and omits steps such as design reviews and code walk-throughs that are an expected part of any
development effort.

1. Load and configure the COE. Most developers will find that the COE will meet their needs as is.
However, for some developers the COE kernel may need to be extended to increase shared memory
size, message queue sizes, add sockets, etc. Any changes to the downloaded COE must be carefully
recorded as environment extensions. It is the responsibility of the segment to request that the COE
installation tools make these extensions as the segment is installed. Doing such extensions other than
by using the installation tools is a violation of the COE.

2. Verify that the COE isvalid. The toolVer i f yCOE checks the integrity of the COE and should be run
any time a modification is made to the COE kernel to ensure that the resulting environment is still
COE-compatible. It also checks security-relevant features to be sure they have not been adversely
modified.

3. Write and unit-test code. Develop and test a baseline version of the new software segment as
independently of COE software as is possible, but within an environment as nearly identical to the
actual runtime environment as is possible. The purpose of this step is to resolve problems within the
segment and identify potential interface problems between the segment and the COE, especially the
runtime environment. The simplest approach is to launch the segment executables from a command-
line prompt within an xterm window (or equivalent) and look for software bugs or conflicts with the
COE. The focus of this step is to verify that the segment is contectally.

4. Create segment structures. The focus of this step is to verify that the segment can inteskamally
with the COE. Chapter 5 identifies information required to describe a segment through use of segment
descriptors. Decisions should be made at this point whether to package data and software together or as
separate segments, how best to include any required environment extensions, how to handle segment
installation and removal, which features should be icons versus menu entries, etc.

DIl COE I&RTS: Rev 3.0 July 1997 66

Process Flowchart

5. Validate the segment. Thetool Ver i f ySeg must be run againgt all segments to confirm Runtime
Environment (Category 1) DIl compliance. Ver i f ySeg must be rerun when any file within the
segment that will be present at runtime is modified. Thisincludes segment descriptor files, datafiles,
and executables. A segment cannot proceed any further in the process until Ver i f ySeg confirmsits
validity. COE tools used later in the process will reject a segment that has not passed Ver i f y Seg.

6. Install and test the segment. Thetool Test | nst al | allows a segment that is already present on the
disk to be installed exactly asif it had been loaded from distribution media at an operational site. When
installed successfully, it should be accessible from any operator login that has a profile that has been
set up to include the segment. At this stage, it should not be necessary to launch executables from a
command line or by any other interim technique. If theinstallation and test are not successful, the tool
Test Renove will undo the sde effects of installing the segment, but will not delete the segment
from disk.

7. Evaluate the segment’s DIl compliance leye part of the segment test, the devel oper must evaluate
the segment’s compliarfausing thd & RTS andUser Interface Specification checklists. The
checklists are to be submitted with the segment as part of the segment delivery.

8. Create aninstallation tape. The toolivakel nst al | creates an installation tape than can then be
loaded through tools in the System Administration application just as a site operator will do.
Developers must include this test and load the segment on a pristine system to be sure that all
development environment dependencies have been removed. Failure to correctly perform this step
increases the probability that problems will be found when this step is attempte®&Athe

9. Performa systemtest. Whether the segment has been installed from tape, creakdskbynst al | ,
or created through thEest | nst al | tool, a system-level test should be performed to identify any
problems with the COE or other segments for which the developer is responsible.

10. Test segment APIs. This step applies only to those segments, typically COE-component segments,
which contain APIs that other segments will use. A test suite is required for all segments that submit
APlIs.

3.2.1.3 Segment Submission

Segment submission to the SSA can be accomplished in two ways. Makelnstall can be run to create a tape
that is sent by mail or courier to tB&SA. Multiple segments may be suitted on the same tape. This

approach is required for classified segments, and for segments that are “very large” and so would require a
lengthy transmission time if submitted electronically.

An alternative approach, implicit in Figure 3-1, is to submit the segment electronically. Electronic
submission of a segment is an automated process of compressing and encrypting the segment, then using
Web technology to transmit it to the SSA. The segment must be in the “pre-Maké&fosnat meaning

that alterations made during the installation process have not been performed. These alterations are usually
done by &ost | nst al | script (see Chapter 5) which may create data files, perform operations based on
hardware type, etc.

1. Compressand encrypt the segment. The toolnkSubmi t Tar performs this task on a “pre-
Makelnstall” format segment. The directdryt eg, described in Chapter 5, must contain an annotated
description of output frover i f ySeq. If a segment includes any public APIs, a test suite must be

% The segment developer dosst assign a compliance level to the segment. The SSA assigns a
compliance level, but the developer is required to do a self-evaluation and provide the resul&St. the

This approach allows the developer to have a good idea of what the compliance level will be before the
segment is submitted, and it assists the SSA in assigning the compliance level. In effect, the SSA validates
the compliance tests performed by the developer.

DIl COE I&RTS: Rev 3.0 July 1997 67

Process Flowchart

included to test each of them. The test must include an adequate range of test cases and the results
expected for each test. Details must be sufficient for use by competent testers who do not necessarily
already understand either the application or itsindividual APIs.

2. Submit the segment. Thetool submi t does this dectronicaly across the Internet. Multiple segments
can be submitted at the sametime.

3.2.1.4 Segment I ntegration

Segmentsreceived, whether by tape or eectronically, are placed into the software repository, tested in
isolation, and then tested as part of the deliverable system. Validation is performed at each step using
exactly the same tool set that the developer used during the devel opment phase. This approach allows many
integration responsihilities to be performed by the devel oper with only a need to validate that they were
performed correctly when a segment reaches the traditional system integration phase.

The process steps performed from this point on in Figure 3-1 are the responsibility of the SSA, not the
developer.?® They are described here because devel opers are still an active part of the processin isolating
and correcting problems.

1. Receive segments. Segments received electronically are placed in an isolated and safe disk directory.
Segmentsreceived viatape are placed there manually by a member of the SSA configuration
management team. The process point of contact is notified that the segment has been received and isin
process.

2. Validate the segment. Ver i f ySeg isrun against the segment submitted and theresults are analyzed.
Discrepancies between the output of Ver i f ySeg produced by the devel oper and that produced by the
integrator can occur for anumber of harmless reasons. These are reconciled against the annotated
results provided by the devel oper when the segment was submitted. Segmentsthat fail to pass
Ver i f ySeg or thereconciliation process are rejected and the process point of contact is notified.

3. Submit segment to the online repository. Segments that have been validated by Ver i f ySeg are
compressed, encrypted, and placed in the software repository. Notification that the segment isnow in
therepository is sent to the process point of contact.

4. Test segment inisolation. The segment isloaded on atest system with the minima segmentsrequired
for the operational system. If the test fails, the process point of contact is notified with a detailed
description of the problem. The segment remainsin therepository but it isnot available to anyone
except the devel oper.

5. Assign segment DIl compliance level. Testing performed by the SSA includes a compliance check
using the I&RTS and User Interface Specification checklists. The checklists produced by the SSA are
compared against the checklists submitted by the devel oper (as described in subsection 3.2.1.2).
Discrepancies are eval uated to determine the reason, and the appropriate process point of contact is
notified of the compliance level assigned to the segment.

6. Advance segment to test level. Segmentsthat work correctly in isolation are advanced to the next
testing level and are so noted in therepository. The process point of contact is notified and devel opers
needing the new segment are notified that a beta version isavailable.

7. Create Configuration Definitions. Most segments will not be loaded on every platform. One or more
configuration definitions that include the segment are established.

% The DISA SSA performs these steps for COE-component segments and mission-application segments
within DISA COE-based systems. The SSA identified by the cognizant program manager performs them
for other mission-application segments.

DIl COE I&RTS: Rev 3.0 July 1997 68

Process Flowchart

8. Perform systemtest. Configuration definitionsincluding the segment areloaded onto platforms for
system testing. Those that fail areretained in the repository and alist of problemsis sent to the process
point of contact. Depending upon the severity of the problems, the segment may be rejected,
provisionally made available for other devel opers to continue working, or accepted with known
problems.

9. Accept segment. Segments that are deemed to be sufficiently stable are advanced in the test process
and declared to beready for delivery to operational sites. Thisis so noted in the repository and
notification of acceptance is sent to the process point of contact. The segment catalog is updated to
reflect that the segment isnow available and interested parties (operational sites, program managers,
developers) are notified of the new capability.

3.2.1.5 Segment I nstallation

Segments can be distributed to sites either electronically or by other distribution media as appropriate. The
Makel nst al | tool isused to extract segments from the repository and write them to tapes or other
media. The mediaisthen manually delivered to the site. Oncereceived at a site, the site administrator can
use the ingtallation tools in the System Administration application to load segments directly onto individual
platforms. Theinstallation tools also alow the site administrator to designate one or more platforms as
segment servers, load segments from e ectronic media onto the segment server disk(s), and then load
platforms across the site LAN from the segment servers. This greatly reduces ingtallation time because
multiple platforms can be loaded simultaneously from disk rather than serially from much slower storage
media

Ingallation can aso be performed e ectronically through the Renrot el nst al | tool. The

Renot el nst al | tool operates in either a “push” or a “pull” mode. In a push mode, the appropriate SSA
initiates electronic transfer of segments from the repository to operational sites. Segments can be installed
in a push mode to either a segment server or to an individual platform. In a pull mode, the remote site
initiates the segment transfer. This is done by selectingahmet el nst al | tool from the System
Administrator application. Operating in this mode, fegrot el nst al | tool establishes a connection to

the repository, provides the operator with a list of segments that can be downloaded, and provides the
operator with the option of loading segments onto a segment server or installing them directly onto a
platform.

The discussion of installation given here is necessarily abbreviated. The capabilities provided by the COE
are much more powerful. Refer to the appropriate SDMS (Software Distribution Management System)
documentation for more information.

3.2.2 Processes Specific to Database Segments

When developing a database segment, the following additional issues pertaining to its database must also
be addressed. The discussion that follows specifies requirements of all COE-based database segments. The
DIl COE SSA will ensure compliance for all database segments for which DISA is responsible. For all

other database segments, compliance assurance is the responsibility of the cognizant DOD SSA.

3.2.2.1 Segment Registration

Both the use and the source of data will be identified as part of the Segment Registration for any database
segment. The Segment Registration document will also include space requirements for the database within
the DBMS (including index space), database scalability (including rate of growth, if any), and application
usage. The application usage section must define access for each individual application at the data object
level in terms of objects accessed and the mode (read or read/write) of that access. Developers must

DIl COE I&RTS: Rev 3.0 July 1997 69

Process Flowchart

identify any COTS toolsthey are using if those tools will require runtime components to be installed
outside the segment.

Where application segments that use databases are being devel oped separately from the database

segment(s) they access, the developers must define the application’s required access to database objects.
The database segment owner (development sponsor or DISA) controls an application’s access to database
objects and must approve or reject a segment’s proposed read/write access to the database. Database
segment owners are responsible for defining generic read access permissions for their databases. In either
case an application’s access requirements are the basis for defining its corresponding database roles.

DISA will review database segments’ contents for duplication of data objects and sources that already exist
in common databases or in other database segments. The space or storage requirements of the segment will
also be reviewed in the context of storage availability on DIl Database Servers. DISA (or the cognizant

DOD program manager) may direct developers to use common or external data objects.

Registration of database segments requires additional information to that given in subsection 3.2.1.1:

Functional Area DOD functional area as defined in DODD 8320.1.

DBMS The DBMS that is used to manage the segment(s) being
registered.

Database/Data Store Name The identifying database name(s) and/or file name(s) for the
segment(s) being submitted, with version numbers assigned in
the field.

Using Applicationg/Systems The name and brief description of applications or systems
known to use the data segment(s) being registered.

Domain Description A brief description of the information domain of the
segment(s) being registered.

Fielded Sites A general description of the DOD lmitons where the data

segment(s) will be used.

The additional information listed here must be updated when the database segment is actually submitted. It
is captured and made available to authorized users for purposes of potential reuse of the data assets
provided in the segment.

3.2.2.2 Segment Development

The segmentation process for database segments begins with identifying the database segments that will be
established to create the database. It is possible that the database can be implemented as a single segment or
multiple segments.

A database segment is the building block that provides specific data services for one or more DIl COE
applications. If a database is only supporting one application and has no domain tables (e.g. Country

Codes), then it may make sense to implement a single application-unique database segment. However, if

the database supports more than one application, then the developer should determine whether the database
should be implemented with one or more shared database segments. The advantage of multiple shared
database segments is that the segments are more granular and a shared data server can be configured to
support the data requirements of mission applications without having to carry superfluous data services. A
disadvantage of multiple shared database segments is the management of database object dependencies that
can be created by such things as foreign key constraints. These inter-segment dependencies complicate the
management of segment installation and, moreover, the removal of segments.

Another consideration for developers is to determine which parts of a database are shared between
applications and which parts are unique to a given application. From a configuration management point of
view, one segmentation strategy would be to place the application-unique database components into a
separate segment.

DIl COE I&RTS: Rev 3.0 July 1997 70

Process Flowchart

Additionally, determining the contents of a database segment requires several factorsto be considered:

e Which tables can be conveniently managed as a unit,
e Which tables are defined to support a functional area,
e What arethe sources of data, and

* What arethe database object dependencies.

The structure of the database or databases in the segment must be fully described during this phase. This
descriptive information includes tables, elements, indexes, privileges, triggers, etc. The database
description will be maintained in the Rel easeNot es for the database segment. The storage structure of
the segment must al so be defined.

Deve opers should examine the SHADE repository of universal and shared database segments for potential
reuse. For example, if the SHADE repository contains a universal database segment for country codes, then
it may be possible to remove the country-code table from the proposed segment. It is more than likely that
the physical schemas will not match but it is possible that the proposed segment could implement a
database view to the country-code table in the universal segment.

Any changes to the DISA-defined configuration of the COTS DBMS must be requested from DISA as
COE environment extensions. The DISA DIl COE Chief Engineer will review such requeststo ensure they
do not conflict with the needs of other segments, and will be responsible for changing the COTS segments.
DISA’s defined DBMS configurations are available from the COE Online Services.

A test database is required for all database segments. The purpose of the test database is to allow the SSA

to test the segment’s operations and to test the applications that access the segment’s data. The test database
must be unclassified. If the segment’s data fill is classified, but the schema is not, a separate data segment
must be provided for the classified fill.

3.2.2.3 Segment Submission

Developers must remove all data files fromBBS _fi | es directory before submitting the database
segment. The files in this subdirectory are the ones owned by the DBMS and used to hold the online
database. They are created on a database serverBosingnst al | , and should not be included with
the segment. See Chapter 5 for an explanation @B8ef i | es directory and for more information on
the database segment’s structure.

Database segments submitted to the DIl G3A will be included in the SHADE repository.

3.2.2.4 Segment I ntegration

Developer testing of all applications thatass a Database Segment’s data structures is performed during
this phase to ensure proper functioning and performance of new and existing applications. Following this, a
segment installation test will be conducted.

Testing a database segment must include tests of all applications that access the objects in that segment,
whether or not they were provided by the database segment’s developers. The purpose of this testing is to
identify application problems so their respective developers can initiate corrective action.

3.2.2.5 Segment I nstallation

Database segments are installed only on a database server. Where data fill is a part of a database segment,
its installation viaRenot el nst al I may not be supported because of the potential need to transmit a
large quantity of data electronically. Network transfer of large data sets can take a long time. Since the

DIl COE I&RTS: Rev 3.0 July 1997 71

Process Flowchart

DBMS must be operating in its maintenance mode during a database segment install, users could be denied
database services for asignificant, possibly intolerable, period of time.

DIl COE I&RTS: Rev 3.0 July 1997 72

DIl COE/SHADE Database Concepts

3.3 Migration Considerations

The preceding section dealt with the development process asiif it represents new devel opment. However, much of
the present and planned functionality is derived from existing legacy systems, not new devel opment, and it simply is
not feasible in many cases to totally abandon a system and gtart over. A migration strategy must be implemented
which allows legacy systems to take advantage of COE benefits. The strategy must simultaneoudly balance full DIl
compliance versus implementation cost, rapid system deployment versus risk to system stability, porting
functionality versus new devel opment, and preservation of capahilities users aready have versus duplication.

With the exception of subsection 3.2.1.2, the process outlined in the preceding section applies directly to both new
development and migration srategies, or requires minimal customization. However, subsection 3.2.1.2, which
describes the segment devel opment phase, requires a few additiona specia considerations.

It is helpful to remember that the overarching approach isto build on top of the DIl COE, not to decompose the
COE into constituent parts to build on top of some other architecture or body of software. In other words, the
approach isto integrate components from legacy systems into the COE, not to integrate the COE into an existing
legacy system. This perspective is fundamental to successful integration.

The key to reusing the COE and to achieving DIl compliance is the concept of the public API. APIs represent the
gateway through which segments may gain access to COE services, including the kernel. Software devel opers and
integrators must use public APIs and avoid dependence on a particular version of the COE since the public APIswill
be preserved as the COE evolves. Applications must migrate away from private or legacy APIs since they will not
necessarily be supported in subsequent COE rel eases.

Given this perspective of integrating components from alegacy system into the COE, the following considerations
will lead to a successful migration strategy. The recommendations are not listed in any particular order or priority
because what will be an effective sequence will vary from one legacy system to ancther.

* Create a requirements matrix. The matrix should identify requirements already met by the COE, requirements
that the COE meets but which require modification, and unique requirements. This matrix represents the
development work that must be performed. Modifying COE functionality requires negotiation with the DISA
DIl COE Chief Engineer and approval by the DISA COE CCB. Mission-unique requirements may be met by
porting legacy components, by other mission segments externa to the COE, or by COTS products.

* ldentify anticipated source code changes. Most segments should be able to achieve Level 5 compliance without
any source code changes. Thisis because most of the Level 5 requirements are simply good, standard
programming practices (e.g., not hardcoding absol ute pathnamesin the application). However, above Levd 5,
source code changes are likely to be required to migrate the legacy system to use COE services. Commercial
products are available which will analyze source code and identify APl usage and hence help pinpoint areas
where changes may be required.

e ldentify public COE APIsto be used. The API analysis from the preceding recommendation can be useful in
determining what APIs from the COE are going to be needed. An initial step in migrating to use COE services
might be to create an interim layer that mapslegacy APIsto their corresponding COE APIs. Thiswill often help
in rapidly achieving Level 6 (Intermediate DIl Compliance) from Level 5 (Minima DIl Compliance).

* ldentify areas where the proposed application overlaps the COE. Runtime compliance at or above Level 6is
largely a process of removing duplication.

* ldentify support services within the legacy sysem. These support services are candidates for replacement by
COE sarvices and should be partitioned away from the mission application through modularization of the code.

» Develop a schedule and strategy for achieving Level 8 compliance (Full DIl Compliance Level). Intermediate
steps to achieve alower level of compliance are very useful as progress milestones in the migration strategy.

DIl COE I&RTS: Rev 3.0 July 1997 73

DIl COE/SHADE Database Concepts

Segments must demonstrate Level 7 compliance (Interoperable Compliance) prior to acceptance as an official
DISA fieldable product and must show migration to Full DIl Compliance unless the segment will be phased out.

* Determine how the segment will be integrated with the Executive Manager. The COE ingdlation tools provide
“hooks” to allow segment functions to be accessed from either an application icon available from the desktop or
as options in a pull-down menu within an application. Uker Interface Specification contains guidelines for
which approach is most appropriate for segment features. The Executive Manager uses a commercial CDE
product, so consultinGDE documentation will be very useful.

« Determine which account group(s) the segment will belong to. Chapter 2 explains that account groups permit
dividing users into groups based on how they will use the system (system administration, database
administration, etc.). This is important because it is the account group that determines the runtime environment
for a segment. The COE allows a segment to belong to multiple account groups because some segments, such as
a Printer segment, are of general utility while others, such as a propagation-loss tactical decision aid, are much
more specific to a mission-application domain.

» Determine the required runtime environment extensions. The COE enforces the principle that segments may
extend a base environment according to a set of well-defined rules, but may not alter the environment in a way
that adversely impacts other segments. Chapter 5 elaborates on the rules for how segments may extend the
environment. The important points here are that segmeistseparate the runtime environment from software
development preferences, and identifying changes required in the runtime environment is the key to achieving
Level 3 (Platform Compliance) compliance.

* Negotiate new APIs or modifications with the DISA Engineering Office. Identifying functionality missing from
the COE or required modifications can often serve to drive COE development. Modification of APIs and the
introduction of new APIs requires approval by the DISA DIl COE Chief Engineer and by the DISA COE CCB.

* Useonly public APIs. Use of private APIs or APIs from a legacy system may be expedient for an interim
period. However, use of such APIs will limit compliance to Level 6 or 7, or lower, and the risks associated with
the fact that such APIs are not supported and may vanish in subsequent releases of the COE are the
responsibility of sponsors of such a legacy system.

4. DIl COE/SHADE Database Concepts

SHADE uses database segmentation and Shared Data SBR8)sa§ the primary underlying mechanisms to

enable data sharing. Packaging data into database segments and installing them on an SDS allows multiple
organizations and functions to share single copies of a DBMS (i.e., one per physical data server) in the same way
that packaging applications into segments allows software systems for multiple functions to coexist on the same
platform. At the same time, identifying database segments as Shared or Universal allows explicit sharing of data
among software systems, applications, and their user communities. Database segments provide a convenient way for
organizations to loa8DSs with the data structures and values that users require. This packaging tedhrdatgee w

make it easier for data administrators to collect required metadata on implemented structures and to physically
reorganize (multi-segment) databases in ways conducive to distribution and replication.

The function of a COE SHADE SDS together with the databases it manages is to providatioforonusers

through applications thateess the databases, and to support system and database administrators’ maintenance
functions. The operations of an SDS involve the database serveatdibasks/database segments managed by it,

and the applications that access one or more databases. The discussion that follows addresses the operational roles of
each.

An SDS provides data management services to its client applications. In order to be useable, it must constitute a
stable, reliable operating environment that developers can design for. Database services include tools to support the
management, by a site administrator, of users’ discretionary access to databases based on the applications they are
permitted to use. This is governed by the following principles.

Ml COE I&RTS: Rev 3.0 July 1997

DIl COE/SHADE Database Concepts

e Userswill not need access to all applications.

* Applicationswill have multiple levels of database access that can be granted to users.

* When access to an application is granted to or revoked from a user, the corresponding database permissions are
also granted or revoked.

SHADE database services within the COE areimplemented as a federation of application-owned (Unique) and
common (Shared and Universal) database segments. Application segment devel opers control the data and structures
that are specific to their Unique segments and can change the data or their structure when necessary. The
configuration of Shared and Universal database segmentsis controlled by the appropriate joint configuration
management authority. All these databases reside on the SDS that provides services to the applications, acting as
database clients, within the network. The databases within a particular SDS are isolated from each other, physically
and logically, by being placed in separate storage areas and by being owned by different DBM S accounts. Database
developers sustain thisisolation by defining one or more database accounts to own their data objects and by
allocating those objects to the owner accounts they have created.

This configuration, using adisk controller and drive analogy, is shown in Figure 4-2. The core database

configuration, containing the DBM S Data Dictionary and associated system information, is part of the COE and is

represented by the System Database. All other databases, whether provided by DISA, a devel oper, or some other

agency, are included as ‘component’ databases under the management of the SDS. The set of component databases
available from a particular SDS is determined by the set of apiplis that server’s database is expected to support.

From the DBMS perspective, all databases are shared assets, whether they are common or not, because they are
accessed by nftiple concurrent users. They are also dynamic because their data changes even if their structure
remains static. Databases may be interdependent. Databases depend on the COTS DBMS service and are built
within its constraints. Databases can be accessed by applications other than those written by the database developer.
While database applications today are usually written by the database’s developers, this will be less true in the future
as SHADE data object reuse increases.

Shared Data Server (SDS)

———
1
= -
G Component
sll[e|LDatabases
System olllA E
Database rIlle S p
TI{|E & E
S M
L/

Figure 4-2: Shared Data Server Architecture

Applications that use databases to manage their information are the interface between users and the data. Some
applications use their databases interactively, in a transaction-processing mode, to perform the work for which they
have been designed. Others have a single process that writes data for many readers. Some pull data from remote
sources directly to replace existing data. They then allow read-only access to that remotely provided information.

DIl COE I&RTS: Rev 3.0 July 1997 75

DIl COE/SHADE Database Concepts

Users connect to the SDS through the client applications, possibly in multiple sessions. Each session must behave as
if it isisolated from therest of the system and knows of no data other than that bel onging to the applicationitis
executing.

Note: The DIl COE requires that database transactions implement strict two-
phase locking. Two-phase locking and two-phase commit are not
synonymous. Two-phase locking is implemented by the DBMS to
sustain the atomic properties of transactions. Two-phase commit is
implemented in a distributed DBMS to ensure consistent updates of
replicated data records. It is used when a distributed database requires
synchronous updates. For example, GCCS uses an asynchronous
distributed transaction model and therefore cannot use two-phase
commit.

Bl COE I1&RTS: Rev 3.0 July 1997

Constraints on Database Developers

4.1 Constraints on Database Developers

The devel opers of databases and applications accessing databases must conform to the COE database server

environment so they do not bypass its features. Conformance also limitsthe likelihood of data corruption. The

combination of th&DS configuration and the developers’ implementations must ensure two things. First, each
connection of a user to a database through an application must function in the proper context for that application and
database. Second, each user’s connection to a database must not interfere with any other user’s connection to the
same or any other database.

The development and integration standards for COE databases support an evolving configuration of database
services. Using GCCS as an example, in version 0 each GCCS application had its own database and database
management system. Commencing with GCCS 1.1, the separate database servers were replaced by a single-server
running a single-instance of the database management system. Each application retained ownership of its database
within that instance, but shared the DBMS service with the other applications’ databases. The next step was to have
a database segment on the server that is accessible from multiple application databases. For example, suppose two
application databases need a country-code table. In the prior step, each database would have its own version of the
country-code table, which might be identical. In this step, a single copy of the country-code database segment would
be on the SDS and accessed by both agipdits. Thus, th&DS provides shared, concurrent access to multiple
databases and database segments with varying degrees of autonomy. COE-based systems are to follow the same
approach as that pioneered by GCCS.

The principal reason for this change in GCCS was to meet DOD’s informatiibebditg requirements. The

multiple instance configuration split information among data applications that were uniquely configured to support
the needs of specific mission applications. The single-server, single-instance data management service provided by
GCCS conserves system resources by not requiring multiple copies of the DBMS to be executing and eases system
management by providing a single point-of-entry for database management services. That single point of entry also
simplifies application development. However, that is not the only method for implementing SHADE data services.
COE systems may implement a configuration that distributes the database over a LAN/WAN for survivability or to
distribute the processing load. Multiple DBMS instances may be used for data isolation or to separate different user
communities on the same server. Regardless of the specific database server configuration, SHADE requires that
information be treated as a DOD corporate resource, hot something owned by applications. The benefits that come
with the central service does limit the freedom of developers by requiring that they implement databases compatible
with the larger multi-database environment. In addition, the increased complexity of a multi-database system could
overburden the operational sites’ system and database administrators unless it is implemented consistently. This
again limits developers by constraining their databases to function within a consistent administrative framework.

The principal consideration for developers is that their applications and databases no longer have exclusive use of
the database management system. Instead of being an application-specific data management tool, the DBMS is a
central service that supports all applications’ databases. As a result, developers cannot customize or tune the DBMS
to the particular behavior of any single application. Any such modifications to the DBMS will inevitably affect other
applications and databases. Similarly, the individual component databases are no longer the sole occupants of the
DBMS. Developers must implement their applications, constraints, and component databases so that they do not
interfere with others sharing the same DBMS. Further, because there are multiple databases in the DBMS,
applications can connect improperly to other databases. Developers must ensure that their applications connect only
to the database they intended to use. They must also design their databases to maintain their own integrity without
reference to external applications.

In order for component databases to plug into and play properly on an SDS, they must conform to the standards
defined herein. The objective is to support the independent development of maintainable databases that will function
reliably within the larger multi-database system. This release d&IREShas extended the COE tool set to include

tools that deal specifically with integration problems related to multi-database environments.

Developers must implement their databases such that the operational sites’ administrators can manage the collection
of databases. If system and database administrators are required to manage multiple databases, each with its own
integrity rules and access methods, their jobs quickly become impossible.

DIl COE I&RTS: Rev 3.0 July 1997 77

Database I ntegration Requirements

4.2 Database | ntegration Requirements

The SHADE Database Server isthe COE component that provides shared data management within COE-based
systems. Regardless of the COTS DBMS used to provide database services, its functions within the system remain
the same;

e Support independent, evolutionary implementation of databases and applications accessing databases

* Manage concurrent access to multiple, independent, and autonomous databases

* Maintain integrity of data stored in the DBM S Server

* Provide discretionary access to multiple databases

e Sustain client/server connections independent of the client application’s and database server’s hosts

« Support distribution of databases across multiple hosts with replicated data and with distributed updates

* Provide maintainability of users’ access rights and permissions

» Support backup and recovery of data in the databases.

In addition, database services within the COE are not restricted to a single vendor’'s DBMS. As a result, developers
must implement their databases such that dependence on any particular DBMS vendor’s product is limited. The
discussion that follows provides more detail on each of these general requirements.

4.2.1 Evolutionary | mplementation

The goal of evolutionary implementation is to be able to incrementally develop, field, and improve software and
information services. This “build a little, test a little” philosophy applies to databases as well as applications. In the
database context, the objective is to field the latest and best information structures and contents, and to progressively
reduce the number of structural variants representing the same entities and relationships. Databases and applications
should be able to evolve independently in principle, but in practice this is tempered by the dependence of
applications on the database’s structure. In addition, component databases are dependent on some unique DBMS
features for their implementation.

Database developers can still support evolutionary implementation by maintaining the modularity of their
component databases. To achieve this goal, component databases must first coexist within the server without
corrupting each other’s data. This does not simply require isolating databases from each other; it requires that all
actions across database boundaries be intentional and documented. The COE/SHADE architecture requires that
segments not modify other segments. The same applies to component databases modifying or extending other
database segments. When a database segment does have a dependency on some other component database, that
dependency will be kept in a separate segment.

Component databases are dependent on the DBMS used for the SDS. The speuifind®used for their

implementation within the DBMS and the environment it provides are both defined by the DBMS vendor. Database
developers must be careful in their use of vendor-specific features so they do not create unintended dependencies on
specific database management systems or, more importantly, particular versions of the DBMS, while still taking
advantage of the database server’s capabilities. To accomplish this, developers shall separate DBMS-specific code
from that which is transportable. See Appendix F of this document for information on vendor products. Additional
information and guidance on SHADE-specific issues can be found in the SHADE Architecture and related
documents.

81 COE I&RTS: Rev 3.0 July 1997

Database I ntegration Requirements

The same constraints on databases a so apply to applications accessing those databases. Application devel opers must

ensure that applications connect through regular, documented APIs and shall not assume the use of particular DBMS
versions. Thisdoes not prohibit devel opers from designing to the current version of a COE-compliant DBMS, using
vendor-supplied tools that are part of the COE, or from accessing objects in other database segments. It prohibits
developers from embedding DBMS vendor’s runtime libraries or environment variables in the application segment.
For example, developers should not provide their canaenv script in the application segment because it creates
an implicit version dependency on that version of the Oracle RDBMS. In addition, this example interferes with the
Database Administrator’'s (DBA) management functions.

The key to managing the evolution of component databases and the applications that use them is documenting their
interrelationships. Applications’ dependencies on databases shall be documented so that database-segment version
changes can be tested with the applications. The component database’s dependency on the DBMS will also be
documented for the same reason. If developers use DBMS vendor-supplied tools to implement applications, the
dependency on the tools will be documented. When applications or component dataiessedada objects

belonging to other component databases, the dependency among the databases shall be documented as well. These
dependencies are documented undebiteabase andRequi r es descriptors of the segmengggl nf o file.

See Chapter 5 for more information.

When one developer is responsible for both applications and databases, the management of such interdependencies
is simplified. Database segments and associated application segments will usually be delivered at the same time and
installed together. When separate developers are responsible for databases and applications, however, careful
coordination between the two developers will be required. As the database federation evolves, it is likely that
component database segments will be upgraded before applications that access them. When applications are affected
by component database segment modifications, legacy views may be provided as directed by the cognizant authority
for the segment. Such views will be read-only, but can allow query tools to continue to function until they are

modified to work with the re-engineered database.

4.2.2 Database Segmentation

Another issue with respect to modularity is that of subdividing a database into coherent segments. If a database is

only supporting one application, then it might make sense to implement a single Unique database segment.

However, if the database supports more than one application then the developer should determine if the database
should be developed with one or more Shared database segments and Unique segments. The advantage of multiple
shared database segments is that the segments are more granul&@@Sctan be configured to support the data
requirements of mission applications without having to carry superfluous data services. A disadvantage of multiple
shared database segments is the management of database object dependencies such as foreign key constraints. These
inter-segment dependencies complicate the installation and deinstallation of database segments.

In the course of determining which data objects will be grouped into a database segment, developers need to
consider several factors:

« Data Objects that can be conveniently managed as a unit,

« Data Objects that are needed together to support a functional area,
« Common sources or providers of data,

« Data object interdependencies, and

* Frequency of update.

Modularity can be enhanced by allocating data objects among Shared and Unique database segments. A Shared
database segment contains data objects that are intended for use by multiple applications or other data stores. A
Unique segment’s objects are specific to the applications contained in a specific software segment. Additionally, the
developer should investigate the SHADE repository for existing Universal and Shared database segments for

potential reuse. For example, if the SHADE repository contains a Universal database segment for country codes,

then it may be possible to remove the table(s) defining country codes from the proposed segment and use the

existing country code database segment. In the case of a legacy system, a view may need to be created to the Shared
or Universal database segment until the application can be modified. Divide the remaining tables in the database

DIl COE I&RTS: Rev 3.0 July 1997 79

Database I ntegration Requirements

along functional boundaries to form segment groupings (i.e., neither unigque nor replaceabl e by an existing database
segment). Potentially Shared database segments should be registered in the SHADE repository. The outcome of this
process should be a set of one or more database segments with their corresponding groups of identified database
objects. Specific guiddines for creating database objects are found in subsection 4.3.

The database objects in a Shared database segment are common to many applicationsresiding in different segments.
Shared database segments prevent duplication of widely used or required database objects, such asreference tables,
and procedures, such as validation or conversion routines. They also support interoperability at the datalevel by
standardizing key cross-reference fields. The objectsin a Shared database segment must be accessible to many
applications, regardless of which database they reside in, and may support other database segmentsthat are then
dependent on that Shared database segment. Such segmentswill often provide generic read-only or read/write
database roles (see subsection 4.3.5) to support their use by other segments. In this context, the only distinction
between a Shared and a Universal segment is the organizational level at which their contents are managed.

The database objectsin a Unique database segment are not open to, nor intended to support, multiple software or
data store segments, but are used only by a particular software segment. This software segment owns, controls, and
depends on its own database segment, and no other software segment does. Thus, a Unique database segment
usually contains the database tables, triggers, and procedures that support specific, intrinsic functions of a software
segment; it has no data of value to any other segments.

Dividing datain this manner simplifies the system integration effort. When a change is made to a Shared database
segment, all developers of applications that access that segment must be notified and must be given timeto adjust
their application segments. Otherwise the Shared database segment must incorporate legacy views to support the
applications until they can be modified. Changes to Unique database segments, however, require no coordination as
only the applicationsin the dependent segment are affected. In addition, legacy views are seldom required asthe
applications and their database segment, both usually maintained by the same devel oper, will be modified at the
sametime,

Deveopers should also consider the frequency of updates against data tables when defining their database segments.
Separating static reference tables from those that are dynamic allows more flexible system and database
adminigration. The separation may be accomplished by placing the static objects in their own database segment, or
by creating gtatic objectsin a separate storage area (e.g. an Oracle tablespace for read-only tables) within the
segment. The appropriate method will depend on thetarget DBMS. See subsection 4.3.2 for storage allocation
methods and Appendix F for implementation information specific to each vendor’s product.

4.2.3 Managing M ultiple Databases

The COE database architecture is a federation of databases with varying degrees of autonomy. Federated means that
the component databases share DBMS resources. They process data cooperatively but are not part of an overall
schema. They may use Shared and Universal database segments. In some cases they may also share or exchange
data. Autonomous means that each database remains an independent entity. Individual databases may be modified or
upgraded without reference to others (e.g., segments may be added or deleted to support the functionality of the
applications that use the database). Individual database segments within a database may not be changed without
reference to others unless they are unique segments. Developers are also responsible for maintaining their own data
access and update rules.

The federated architecture provides the same modularity within the SDS that mission-application segmentation does
for the user interface. The set of databases available from any particular SDS is tailored to the information needs of
the individuals using that server. Database segments that are not needed can be omitted. This may appear to conflict
with SHADE's stated goals of improving interoperability through data standardization. In fact, it supports those

goals by separating the data that can be shared from those that should not be. As a result, developers and data
stewards can concentrate their efforts on standardizing those data where there is the most benefit in terms of quality
and interoperability.

801 COE I&RTS: Rev 3.0 July 1997

Database I ntegration Requirements

In order for thisto work, each component database must be implemented in a self-contained manner. Thisisnot to

say that a database supporting a set of applications should be self-sufficient. One goal of SHADE’s modular
database implementation is to limit the redundancy of information among component databases. Developers should
not incorporate information in component databases that is already available from other, existing database segments.
Instead, being self-contained means that each component database must contain all information needed to manage
its objects and maintain their integrity. The issues involved in implementing this are discussed in the next

subsection.

4.2.4 Data Integrity

Data integrity addresses the protection of the information stored within a database management system. There are
three general circumstances that must be addressed.

1. The prevention of accidental entry of invalid data.
2. The security of the database from malicious use.
3. The protection of the database from hardware and software failures that may corrupt data.

Implementation of appropriate data integrity measures is the responsibility of the database developers using the
features of the DBMS.

The SDS is responsible for preserving the integrity of each component database and for preventing connections
between an application and data that belong to any other application. COE-based systems may well be secure
systems that contain and process classified data. The database management component must conform to the security
policies and practices of the overall program. Otherwise, the SDS supports the data access restrictions and integrity
assumptions incorporated in each database.

The SDS provides the basic functionality expected of a DBMS. It ensures the reitibyefdhiled transactions or

of a crashed system. The atomicity, concurrency, isolation, and durability of database transactions are the
responsibility of the applications accessing the server. However, supporting these transaction properties is the
server’s responsibility. Developers must pay special attention to transaction isolation because of the multi-database
configuration of most COE-based systems.

Database developers are responsible for defining and implementing the integrity constraints of their databases. The
SDS is responsible for enforcing the developers’ integrity constraints when they are defined within the database.
Application developers must ensure that their applications connect properly to their databases and do not connect
improperly to anyone else’s database segments. Adoption of these practices protects all applications’ data and
allows theSDS to maintain all databases reliably.

Within a component database the implementation of data integrity takes the form of what are often called constraints
and business rules. In the current context, constraints are defined as the rules within the database that govern what
values may exist in an object. Business rules are those rules within the database that govern how data is updated and
what actions are permitted to users.

Until recently, commercial database management systems wéedlin their ability to support the variety of

constraints and business rules that may be needed in a database. As a result, most constraints and business rules of
legacy DIl databases have been implemented in the applications, not the database. Because of the federated database
architecture and because the applications that maintain those databases are also developed independently, it is
difficult to ensure uniform and consistent enforcement of those rules and constraints by a DIl COE SDS.

To avoid problems with constraint enforcement in the DIl environment, developers must place their business rules
and constraints in their databases rather than their applications. This keeps control of data maintenance access in the
hands of the developers where it belongs and ensures that constraints cannot be bypassed. Developers have the
knowledge of their constraints and business rules; DBAs and users do not.

DIl COE I&RTS: Rev 3.0 July 1997 81

Database I ntegration Requirements

Thereason for placing constraintsin the database is shown in Figure 4-3. Application One and its associated

component database were implemented with business rules and constraints in the application. Application Two

placed those constraintsin the database. When a third application (Browser) accesses both databases, it is unaware

of Database One’s business rules because they apegsible. If this application, which could be a user-developed
query tool, modifies Database One, it could corrupt the database out of ignorance.

Placing the business rules and constraints in the database promotes client/server independence. The efficient
implementation of constraints and business rules will have to make use of the DBMS capabilities. If these rules are
in the component database, the application is less dependent on the COTS DBMS product. Also, this approach can
reduce network communications loading by allowing the DBMS, rather than the application, to enforce the rules
within the database. Checking rules within the database avoids passing multiple queries and their results over the
network between the DBMS and the application.

4.2.5 Discretionary Access

Discretionary access addresses the selective connection of users to databases through applications. Database access
is discretionary because not all users have the same permissions to use applications. The objective is to ensure that
users’ database connections operate in the proper context for the applications. Users must be able to operate several
different applications at the same time. The DBMS server must effect each application’s accesses to different sets of
data objects. This means permission to access to specific tables and the mode (read or write) of that access. Because
several databases exist on the SDS, each application must be written to access only the database(s) it belongs with; it
must be unable to access tables belonging to some other application for which it does not have access privileges.
Each user-application connection will have only the permissions needed for that context.

821 COE I&RTS: Rev 3.0 July 1997

Database I ntegration Requirements

Application 1 Application 2 BROWSER

Business
e Constraint

Business
Hiles Constraint
/ Congraints \
Consraints

ZIZ1ZASININ
NN
Z

Data Tables Accessed by Applications

N
N
B

Figure 4-3: Business Rules and Constraints

In this context, DIl databases can be broadly characterized as either public or private. A public database is intended

to be generally available and, in most cases, accessto it will be given to all users of a particular system. Public

databases are usualy read-only. Access to aprivate database is discretionary, not general, and isusually restricted to

a small group of a system’s users. That system’s administrators must specifically grant indiemhssscaa

private database. Private databases often have users with read/write permissions and users with read-only
permissions. A public database will be composed of Shared database segments as defined in subsection 4.2.1 A
private database may also contain Shared database segments, but the data itself needs to be more closely controlled
than the public database. The public/private and Shared/Unique categories address different issues. The distinction
has to do with user access in the former case and with configuration control in the latter case. A Shared database has
many developers writing applications against it; its schema cannot be easily modified. A public, application-owned
database would have one developer but many users; its schema could be changed without affecting other developers.

There are three components to the discretionary access issue: Session Management, Discretionary Access Control,
and Access Management. The first refers to the DBMS’ ability to keep different connections separate. The second
addresses the context of an individual connection. The third deals with the requirements of system and database
administrators to manage the accesses that are provided to users. Without the correct functioning of all three
components, data integrity and consistency can be compromised.

In order for a COE system to be useable, it must provide support to systems administrators as they manage users’
discretionary access to subsets of applications and databases. This means that the approach taken in supporting
access management must fit with overall system administration and security policy.

DIl COE I&RTS: Rev 3.0 July 1997 83

Database I ntegration Requirements

4.2.5.1 Session M anagement

A database sessionisan individual connection between an application and the database management system. It is

the means by which the SDSIe@s one user’s activities working with an application from all other users that are
connected to the DBMS. In this context autonomous applications such as message processors are also database
users.

The SDS is responsible for session management as shown in Figure 4-4. In this example, two users are connected to
the SDS. The first has two sessions with application A and one withatppii®. The second has a session with

application B and one with application C. The SDS maintains five separate sessions. Two sessions are connected to
component database A, two to component database B, and one to component database C; no session is connected to
component database D.

Note that each different execution of an application is considered a separate session and is functionally isolated from
other executions of the same application. Thus, when User 1 starts two separate instances of application A, the
DBMS treats them as different sessions (Al and A2). This ensures that changes being made in different sessions
propagate correctly and do not corrupt data accessed by other sessions.

The key points with respect to session management are that the DBMS, in managing connections, provides sessions
to isolate each one from all others. Isolation facilitates transaction management and system recovery. It also supports
the traceability of database transactions to the user and application.

User
Workstations Database Server
g N
_l Al A2 Bl B2 C
Al
Bl
A2
Listener Processes
_ J
g N
B2
A B C D
C
Component Databases
_ J
DBMS

Figure 4-4. Sesson M anagement

4.2.5.2 Discretionary Access Contr ol

Discretionary access control is used to manage users’ permissions to employ applications to access or modify data
managed by the SDS. It has a broader scope than information security. Security is focused on whether users are
permitted to know about and allowed to view certain information. Discretionary control of access deals not only
with users’ permissions to change information but also the context in which they are permitted to make changes.

Bl COE I&RTS: Rev 3.0 July 1997

Database I ntegration Requirements

Users will have access to multiple databases through many different applications. Their overall database permissions
are the union of the permission sets of theindividual applications they have theright to use. At any point in time
only the subset of those permissionsrelevant to the active session can be allowed to be active.

Figure 4-5 illugtrates the need for discretionary access. A user has three database sessions active, one with each of

three different applications. Each application accesses a different set of objects within the database. The data objects

shown represent al objects that a user has permission to access and are marked to show which application context is

relevant to that access. If all of the user’s database permissions were active at all times, it would be possible for one
or another of the applications to access and modify data that is not relevant to it. Instead, each application must only
be able to access its corresponding data objects.

‘ Application 1] [Application 3 \
Application 2
P
P < > <]
SIS
3
S8
PR3 TS
P X< >4 D OO O]
R R
User Accessible Data Tables

Figure 4-5: Functional Context

It is the responsibility of database and application developers to provide discretmresy eontrols. The

operational sites’ administrators are responsible for using those controls when assigning database and application
privileges to users. The necessary access controls will be defined in the database segment design as discussed in
subsection 4.2.5. Session management by the DBMS provides the database and application developer the isolation
needed to implement discretionary access. When designing access controls the following principles apply:

* Users shall have unigue accounts within the DBMS. Those accounts shall have only the database permissions
needed for their work

* A user’'s database permissions will only be active within the context of the current application and database
session. In other words, when a user starts a database session through some application, that session will only be
able to access the data objects appropriate to the application and the only active permissions on those objects
will be those appropriate to that application’s use of those objects.

DIl COE I&RTS: Rev 3.0 July 1997 85

Database I ntegration Requirements

These context-specific controls are necessary because users will have access to multiple applications and each
application hasits own set of database permissions. Asauser is granted access to data objects based on the
applications needed, thetotal set of database grants for that user expands. The DBM S manages sessions at the user
account level, so each user hasall granted permissions on all objects whether they are relevant to the current session
or not. If access were not dependent on context, users could have inappropriate permissions for a particular session.
For example, auser might be able to write to a database segment that is supposed only to be read by the current
application. Such pathological connectionsto data objects will, almost inevitably, lead to data corruption.

The context in which an application operates on the database is the application’s “databaselatdbdsérole is

the minimal set of database permissions needed for an application to function correctly. Since these roles are linked
to the application, their definition is the responsibility of the application developer. However, the roles are
implemented within the database so they become part of the database segment. Role implementation is discussed in
subsection 4.3.5.

4.2.5.3 Access M anagement

Access management addresses the work of system and database administrators giving users the permissions they
need. They must be able to connect users to applications, to databases, and to database segments. They must also be
able to revoke or modify those connections as users transfer or assume different responsibilities. The large number

of applications and databases available within COE-based systems could make the administrators’ tasks
unmanageable if access management is not supported with the proper tools. This section discusses the developers’
responsibilities for supportingeess management.

The act of adding an application to a user’s access list, menu, etc. entails adding associated database permissions to
that user’'s DBMS account. Similarly, revoking access to an application requires that corresponding privileges be
revoked within the DBMS. Users must have the proper permissions on both the application and the database, so the
two system activities are interdependertdcéss to applications will often be granted in logical sets or groups of

related applications. As discussed in the previous section, access to databases must be linked to each individual
application or the functional context of the application is lost. One application could have multiple permission sets if
the same executable is used for both read-only and read/write accesses.

The grant association process is illustrated in Figure 4-6. A user is being given permission to use three applications.
As a part of that process, the user must also be assigned the database roles associated with those applications.
Through the database roles, the user receives the permissions on the data objects needed to use the applications. If,
later, the user no longer needs to use these applications, the administrators can reverse the process. When the
application permission is revoked, the database roles are withdrawn from the user. The other reason for managing
database roles at the application level can also be seen here. Assume that these applications represent a group that is
accessed together and that have identical database permissions. If the grouping of applications changes at some
point, the collective role might not be valid. In addition, if there is not a direct one-to-one correspondence between
applications and database roles, it becomes impossible to determine when a database role should be revoked.

861 COE I&RTS: Rev 3.0 July 1997

Database I ntegration Requirements

Application 1] Application 1]

Application 2 = = = = | Application2

Application 3] Application 3]

|Rde2 |Rde2|
|Role3| m u| o l> | Role3|
Associated Roles
and Data Tables

N | e L

Figure 4-6: Grant Association Process

Database application devel opers are the only ones with comprehensive knowledge of interactions with the database.
They must define the database roles and provide the scripts or command sets that create them for incluson in the
database segment. The scripts that grant and revoke database roles are part of the application segment. This allows
them to be executed by the system’s administrators when they are managing access to the applications.

4.2.6 Supporting Multi-Database Tools

Access to multiple databases is one of the major benefits that the COE brings to its users. Database browser tools,
such as APPLIX, allow users to constradthoc queries that span different subject areas and that are not supported

by mission-specific applications. At the same time, however, such multi-database applications present special
problems in the COE context. If the databases were read-only, browsers would not cause problems. However, many
databases are designed to be maintained interactively using the applications associated with them. This means that
users will have permission to write to databases. Those write permissions are potentially active when a user is using
a database browser that means that the browser tool can also write to COE/SHADE databases. This is the reason for
the database roles discussed above. Since the browser is independent of the applications designed for particular
databases, it will be unaware of any constraints or business rules that are in those applications. Thus it could corrupt
data due to its ignorance of the rules.

The key to ensuring database integrity in this case (as in all others) is the enforcement of constraints and business
rules within the database, not within the database applications. If the rules are part of the database, they cannot be
bypassed. While the SDS may withhold write permissions from browser tools, maintaining the constraints in the

DIl COE I&RTS: Rev 3.0 July 1997 87

Database I ntegration Requirements

database provides an extra measure of protection. This also supports the future employment of browser tools as
multi-database read/write applications.

The second issue is one of understanding the context of a particular database. When users formulate queries that
span multiple databases, they are likely to encounter differencesin the way information is represented among those
databases. This could lead the users to draw erroneous conclusions from their query results because they do not
understand the differences between the databases. To limit the chances of this, component database devel opers shall
provide comprehensi ve information on their databases to be incorporated in the DBM S data dictionary and the
SHADE repository. Thisinformation is part of the database segment. At a minimum, developers must provide
comments for each data element and object (including triggersand stored procedures) that explain its usage and
(where appropriate) units-of-measure.

4.2.7 Client/Server Independence

The COE uses a client/server architecture. This applies to database services as well. Developers must preserve the
independence of their applications, functioning as DBMS clients, from the SDS. Specifically, applications that
access databases must not be built so that they have to reside on the SDS in order to work correctly. It cannot be
assumed that all operational steswill have alocal SDS. Further, where Stes have alocal SDS it may be on a
Separate machine that is dedicated to the DBMS, or the server may be collocated with the application on asingle
machine acting as the application server and the SDS. To maintain independence and support the client/server
architecture, applications cannot assume they reside on the SDS.

To sustain the independence between DBMS clients and the SDS, devel opers must not mix extensions to the DBMS
with their databases and must separate the database from the applications that use it. If specialized data management
services are needed by particular applications and are not part of the COE database services, the provision of such
services must be approved by and coordinated with the DISA Chief Engineer.

For example, assume some application needs a COTS expert system shell to manage a knowledge base that isa
component of the application and that interactswith the SDS. The expert system shell, to work properly, hasto be
collocated with the DBMS. The expert system then becomes a segment that is separate from the application that uses
it.

4.2.8 Distributed Databases

A distributed database is one whose data is spread across multiple sites. Dataisreplicated in a distributed database
when copies of particular objects or records exist in more than one of those sites. Data is fragmented when they are
split among sites. Databases are distributed (fragmented or not) to improve responsiveness and increase avail ahility
in systems that serve geographically dispersed communities. Databases are replicated to enhance their survivability
in the same circumstances. In either case, one implementation objective of any distributed database isto provide
location transparency. This means that the user need not know where datais located to be able to access or work on
them.

Depending on the component database, the COE/SHADE has several flavors of distributed databases. Some current

databases are relatively static and are replicated at multiple stes, but exist independently. They are updated through

the periodic replacement of information at each stethat has a copy. Others, such asthe JOPES Core Database, are

dynamic and are replicated concurrently across several sites for survivahility. They use transactions to effect updates

at the affected sites. Some systems, like the Air Force’s Theater Battle Management Control System (TBMCS), both
replicate and distribute data on multiple servers within a site to distribute processing and enhance survivability.

The COE provides distributed database management services for the developers of distributed databases so they can
maintain location transparency and distributed transaction processing. The specific services implemented for a
particular COE database system will depend upon the nature of its distributed data and are the responsibility of that
system’s Chief Engineer. GCCS, for example, uses an asynchronous transaction model. A financial system may
require the use of the more restrictive, but synchronous, two-phase commit.

881 COE I&RTS: Rev 3.0 July 1997

Database I ntegration Requirements

The technology that supports the distribution of databases as used in the DIl COE isevolving rapidly. The GCCS

program, for example, does not at present prescribe a particular implementation method. Devel opers of distributed
databases must coordinate their activities with the DIl COE Chief Engineer and their program’s Chief Engineer to
ensure that their approach can be supported and is consistent with the objectives of the broader program. When a
distributed database is implemented, developers should keep in mind that the distribution plan (fragmentation
schema) may change over time. Distribution methods and the tools used to support them will also evolve as
technology matures. Where developers are assigned responsibility for database fragmentation schemas, each
fragment shall be in a separate segment so different schemas can be implemented.

The distribution of data also means that users may have access to rBli§deThe assignment of users to servers

will depend on the distribution schema as implemented for the various sites. The sites’ DBAs are responsible for
aiming users’ processes at the correct SDS. Developers shall not assume that users are attached to a particular
server. Developers’ applications shall not modify the user's DBMS environment to associate them with a particular
SDS. The COE/SHADE data access tooldifate transparentaess to distributed data.

4.2.9 Backup and Recovery

Database backup and recovery address the protection and preservation of information in SHADE databases for DII
COE-based systems. The current discussion addresses only those backup and recovery issues specific to databases
and database management systems. Conventional system backup and recovery are addressed with the appropriate
common support tools for the system as a whole.

COTS DBMS software provides sophisticated tools to prevent data loss or corruption due to system or media

failure. Their tools are focused on transaction management with the overriding goal of ensuring that the database can
be recovered to a consistent state no matter when or how failure occurs. In the most general sense, DBMS recovery
mechanisms maintain transaction logs that keep a continuous record of all database changes. In the event of a system
failure, those logs are applied to the database to remove incomplete transactions and recreate committed ones. In the
event of media (disk) failure, the last archived copy of any affected DBMS files is used together with the transaction
logs (archived and online) to ‘roll forward’ or recreate all changes that are not in the restored DBMS file.

Execution of DBMS and database backup and recovery is the joint responsibility of a site’s system and database
administrators. DISA provides tools to assist them in executing their duties. COE developers must implement their
databases within the constraints of the DIl COE tools and the DBMS vendor tools. Support for special requirements,
such as off-line archiving of transaction logs, must be coordinated with the sponsoring COE program office and the
DIl COE Chief Engineer.

DIl COE I&RTS: Rev 3.0 July 1997 89

Runtime Environment

4.3 Guidelinesfor Creating Database Objects

This section provides guidelines for devel opersin creating their database segments. Its objectiveisto
support consistency across different databases and improve the mutua independence of the database
federation. Also, the guiddlines strive to make sure database segments do not inadvertently affect each
other.

Deveopers should drive to make all object names meaningful. Names must start with aletter of the
alphabet and may include letters, numbers, and underscores. Names may be 1 to 30 charactersin length
(except for table names that arerestricted to 1 to 26 characters) and cannot be aDBM S reserved word
(refer to Appendix F for aligt of these reserved words). Case does matter when creating names in the DI
COE environment. While a specific RDBMS (such as Oracle) may not be case sensitive in naming objects,
there are some (such as Sybase) which are case sendtive. To ensure consistency and portability of database
objects and their elements, database object and el ement names must be implemented in uppercase.

4.3.1 Database Accounts

Three categories of database accounts have been defined within the COE: DBAS, Owners, and Users. They
have different functions and level s of access to the DBM S based on those functions.

4.3.1.1 Database Administrators

The Database Administrator (DBA) accounts have access to al parts of the DBMS. They are to be used
only for system administration. Their use by database segmentsis prohibited except during the installation
process as discussed in Chapter 5.

4.3.1.2 Database Owners

The Database Owner (DBO) accounts are the creators and owners of the data objects that make up an

application’s database segment. The name must be unique within the COE community and approved by the
SHADE Chief Engineer to avoid naming conflicts. Developers will normally use the segment prefix or a
variation of it as the owner account name. The segment prefix will also be used as the database schema
name and will be incorporated in database file names as discussed below. Owner accounts must have their
password changed after a database installation. Users shall not use the owner accounts to connect to
databases. Developers shall not grant the DBA privilege to owner accounts.

All of the database segment’s installation, except the definition of physical storage, the creation of the
DBO, and the creation of database roles, must execute using the DBO accoussamddoadfter a

successful installation of the data store segment, the DBO account’s password must be changed and its
connect capability must be disabled.

4.3.1.3 Users

User accounts belong to the individuals accessing COE databases. Each individual must have a unique user
account. User account naming conventions are defined by the individual COE program office (e.g. GCCS
Chief Engineer) and will usually be the same as the user’s operating system account. The user’s account
name must be unique within a specific COE database server and may be required to be unique within a
COE program. Creation and maintenance of user accounts are a site-DBA responsibility within the rules
provided by the specific COE program office. Developers shall not assume the existence of particular users
and shall not create user accounts.

The creation of accounts that perform database services is an exception to the rule that developers not
create user accounts. Such accounts support autonomous processes, such as message parssss that a

801 COE I&RTS: Rev 3.0 July 1997

Runtime Environment

database on their own. These processes cannot connect to a database using the DBO account for reasons of
security and data integrity, but their identity must be known to devel opers for their specialized database
permissionsto be set up correctly. Such accounts will be defined by the developer and created as a part of
the segment installation.

4.3.2 Physical Storage

Database management systems provide file management transparency across multiple host computer

systems by hiding the details of file storage from the database’s data objects. At the same time, however,

the placement of data objects on physical storage devices has an effect on system and database performance
due to disk contention and other file system access issues.

Developers cannot assume that DIl SDSs have uniform hardware configurations. ibbaeevdisk

arrays, possibly mirrored, that appear as a single, large mount point; others will have multiple mount points
representing separate disks or several mirrored arrays. Further, it cannot be assumed that existing hardware
configurations will remain static or that current disk-mirroring technologies will remain in use. DIl

developers, therefore, shall not use ‘raw’ partitions, but shall place all files in their segment’s directory tree.
DISA will provide software tools to insulate developers from3B&’s physical implementation. DISA or

the cognizant DOD program office is responsible for providing the core configuration for a COE database
server. The site’s administrators are responsible for configuring installed servers for optimum performance.

4.3.2.1 Data Store/File Standards

The DBMS-managed components of a database segment can be grouped into functional sets based on their
use within the segment. These functional sets are defined as a data store. Data stores are physically kept in
database files whose implementation varies depending on the DBMS being used. A segment’s database will
normally consist of two functional sets (data and indexes) and hence two data stores. The data store
identifier will incorporate the database segment prefix and the function of the dat&S@RES_DATA is

an example of a data store name.

Developers shall define one or more data stores for their database segments. The objective is to allow data
files to be spread across multiple, physical storage devices based on the data store’s function within the
DBMS. Data store names must be meaningful and use a maximum of 30 characters (uppercase letters,
numbers, and underscores). As discussed earlier, the name is case sensitive and only uppercase letters will
be used. No DBMS reserved words will be used.

Data store names must also be associated with the segment and function. Most applications will have either
two or three data stores: Data, Indexes, and (if needed) Static data. The following naming convention is to
be used:

<segnent prefix>_DATA,
<segment prefix>_| NDEX, and
<segnent prefix>_STATIC

for the three storage areas respectively. The Logs within a Sybase database are treated as data stores in a
Sybase implementation.

4.3.2.2 Data Storage | mplementation
Database segments shall create their data stores through the seBosanit'sst al | descriptor.
Database segments shall use@ECr eat eDS API to implement physical data storage. This API

allocates physical storage and creates the data store. For Sybase, this includes the storage area for logs.
CCECr eat eDS hides the SDS’s implementation of physical storage. In this way the database segment is

DIl COE I&RTS: Rev 3.0 July 1997 91

Runtime Environment

insulated from the physical server implementation, whether it usesraw devices or file system directories,
has disk arrays, or uses other storage techniques. Figure 4-7 illustrates data store all ocation.

Where COECr eat eDS isnot available, developers will provide the scriptsto create their data stores and
the operating system files associated with them. Data fileswill be created in the DBS_f i | es subdirectory
of the database segment using the API provided by the DBM S vendor. One or more data files may be
created to support each sorage area. The method for file creation varies with the DBMS being used. See
Appendix F for DBM S-specific file creation information. The data file names should be chosen so they are
clearly associated with the storage area. The recommended naming convention is

<segment prefix>_<store type><n>. dbf

where Storetype’ is the storage area’s purpose (e.g. index) ahid ‘a one-up serial number for the file.
An example data file namegsorts_dat al. dbf.

CREATE_DSDBSORT < DBSORT_LIST
where DBSORT_LIST file contains:
DBSORT_DATA 1,000K

DBSORT_INDEX 1,000K
DBSORT_LOG 300K LOG

CREATE_DS Database Storage
Service
Request Disk 1

QueryDDL | [[DESORLDATAT] |
Disk 2
[o] |
Disk 3
[EEre] | |

Status

Database

Definition
Script

RDBMS
Server

<>

Figure 4-7: Data Allocation

4.3.3 Database Definition Scripts

A database definition script is a shell script that contains all database definition commands for a specific
database object. These objects include tables, views, triggers, and stored procedures. The name of the script
is the same as that of the database object it defines. Depending on the object type, multiple sections can be
defined within one file to perform all the data definition functions required for that specific database object.

The scripts used to create data objects are also used by database administrators in the maintenance of the
databases and the SDS. DIl database administrators have to manage thousands of data objects (tables,
views, etc.) spread across multiple database owner accounts. Routine maintenance such as rebuilding
corrupted indexes or views can become impossible because the DBA cannot locate the script file that
contains the object’s definition among the thousands of scripts on the SDS. To avoid these problems, DIl

B2l COE I&RTS: Rev 3.0 July 1997

Runtime Environment

developers must organize their Data Definition Language (DDL) commands into a series of database
definition scripts. These scripts must conform to a particular file naming convention and structure.

The database definition script is structured to execute various database definition commands based on the
input argument given to it. This functionality isimplemented with a case statement that executes on the
input argument. Table 4-1 ligs the input argumentsto be used for database definition scripts. See
Appendix F for examples of data definition commands.

A database definition script for atable should contain all constraints, triggers, and indexes for the table.

Legacy views (see subsection 4.3.4.3) of the table, if authorized by the cognizant DOD configuration

management authority, may be included in the table’s definition script. Other views must be created using
their own scripts. Rules, stored procedures, packages, and other objects should each be created in their own
separate scripts.

Database roles that are associated with a database schema, such as a default read-only role, can be provided
with a database segment’s definition scripts. The grants for that role, since it is part of the segment, can be
incorporated into the table and view definition scripts. Grants to database services accounts (e.g. message
parsers) can also be incorporated in those scripts. Database roles that are associated with applications or
those whose grants span multiple database owners must be created using their own scripts. These scripts
should include all the grants needed for the role regardless of the object’s owner. Such grants should be
segregated by owner.

The CREATE_DATA_STORE argument for a database definition script should only be used when the COE
tool COECr eat eDS is not available.

4.3.4 Database Objects

The definition of a database schema — the set of data objects, their interrelationships, constraints, and rules
for access or update — is the responsibility of the developers. Developers of application database segments
shall not duplicate data objects that are part of the corporate databases provided by DISA. Where possible
and appropriate, developers should take advantage of and share objects belonging to other databases as
found within the SHADE repository. If a database segment does not meet the full needs of the developer,
changes should be proposed to the cognizant DOD configuration authority fatdbast segment

meeting most of the needs. The developer may choose to develop a similar database segment, pending
resolution of the change request. To facilitate sharing of data, developers shall provide the definitions of
their schema components for inclusion in the DBMS data dictionary as discussed in section 4.1. Definitions
for data stores, tables, elements, stored procedures, and views are stored in the system’s data dictionary
tables as comments. The maximum length allowed for the description is 255 characters. In addition,
narrative information on all these databases should be provided during Segment Registration so developers
can access their definitions in the COE online services (see Chapter 10).

Developers shall provide DISA with their proposed database schema early in the segment design process.
The schema will be reviewed for duplication of objects in other component databases. See Chapter 3 for
more information on the database segment development cycle.

4.3.4.1 Database Tables

Database tables are the objects that store data records. Within a database schema, data elements will be
logically grouped to form tables. Table names must be meaningful and a maximum of 26 characters in
length (uppercase letters, numbers, and underscore). This size differs from the 30 characters available to
other objects because of the legacy view naming convention (see section 4.3.4.3). If Oracle database
snapshots are being used for data replication services for other sites, developers should limit the table name
to 20 characters. Oracle will use the remaining six characters to identify the internal tables and views that
support a database shapshot. No reserved words may be used in the table name.

DIl COE I&RTS: Rev 3.0 July 1997 93

Runtime Environment

Argument Purpose

CREATE_DATA _STORE create a data store (use CREATE_USER to create the DBO
account first)

DROP_DATA _STORE remove a data store

CREATE_RCLE create a databaserole

DROP_ROLE drop adatabaserole

CREATE_RULE create a Sybaserule

DROP_RULE drop a Sybaserule

CREATE_TABLE Create a database table

DROP_TABLE drop a database table

CREATE_VI EW create a database view

DROP_VI EW drop a database view

CREATE_CONSTRAI NT create a database constraint (i.e. foreign key)

DROP_CONSTRAI NT drop a database constraint

CREATE_| NDEX create an index

DROP_I NDEX drop an index

UPDATE_| NDEX perform update statistics for Sybase indexes

CREATE_USER create a database user account

DROP_USER drop a database user account

DI SABLE LOG N

Revoke connection privileges (login) from a database account

ASS| GN_GRANTS

assign grantsto a user or role/group

REVOKE_GRANTS

revoke grants from auser or role/group

LOAD_DATA

load atable with data (from within the command script)

CREATE_PROCEDURE

create a stored procedure or database package

DRCP_PROCEDURE

drop a stored procedure or database package

CREATE_TRI GGER

create a database trigger

DRCP_TRI GGER

drop a database trigger

CREATE_SEQUENCE

create an Oracle sequence

DROP_SEQUENCE

drop an Oracle sequence

REG STER DATA

load application data (i.e., configuration parameters)

Table 4-1: Definition Script Arguments

The cregtion of tablesin System-owned storage areas (e.g. the Oracle SY STEM tablespace or the Sybase

master database) is prohibited. The tables must be created in storage areas created by and bel onging to the
application database segment. When creating a table, the storage area name must be specified. “Create
table” statements must stipul®@&T NULL or NULL constraints for each column because different

DBMSs may default differently on this constraint type.

4.3.4.2 Data Elements

Data elements are the columns or fields within a schema that are grouped together into tables. Data element
names shall comply with DOD standards from the DOD Data Model (DDM) and Defense Data Dictionary
System (DDDS) where applicable. Within a schema developers should use the same characteristics (data
type, length, number precision, default values, constraints, and definition) for all occurrences of the same
element name. If elements are chosen from the DDM, they shall use the data type and units of measure
prescribed in the standard.

Developers shall not use data types that are machine-dependent. This applies primarily to numeric data.
Data elements may be shared across tables and data stores, and across COTS DBMS servers. As an
example, the ‘float’, ‘double’, and ‘real’ data types are machine-dependent in both Oracle and Sybase. See

MMl COE I&RTS: Rev 3.0 July 1997

Runtime Environment

Appendix F for moreinformation on data types available in specific DIl COTS DBMS and which are
machine independent.

The use of default values and decl arative constraints is recommended to ensure data integrity and
consistency. Devel opers must balance this against instances where invalid data items must be forced into
the system, especially when dealing with real-time data. In such cases declarative constraints could cause
dataloss.

4.3.4.3 Database Views

A view does not actually contain or store data, but derives its data from the objects on which it is based.
These objects can in turn be tables or other views. View names must be meaningful and a maximum of 30
charactersin length (uppercase | etters, numbers, and underscore).

Views are often used to restrict users’ access to vertical (columnar) or horizontal (row-wise) subsets of data
tables. Views can also be used to hide data complexity when displaying related information from multiple
tables or to present data from a different perspective than that of the base table. Views can provide location
transparency for local and remote tables in a distributed database, a convenient way of storing complex
queries, and isolation of applications from changes in definitions of base tables.

Views can be queried, updated, inserted into, and deleted from, with restrictions. All operations performed
on a view affect the base tables of the view. Current DBMSsnaitedi in their ability to support updates
through views. If developers need updateable views, the DBMS’s capabilities and restrictions must be kept
in mind. If the updateable views are required for security or data privacy, developers should not grant users
access to the base tables, only to the views.

In general, the following restrictions apply to updateable views.

e Horizontal (row-wise) views. SDSs can support inserts, updates, and deletes through horizontal
views. Such views include those where one table is used to constrain the view to a subset of rows in
another table. Developers are responsible for implementing appropriate error handling if users try to
insert a row that duplicates a hidden row or that contains a value in the restricting column(s) the users
are not permitted to see.

e Vertical (columnar) views. SDSs can support updates and deletes through vertical views as long as
the database constraints do not reference hidden columns. Inserts can only be supported if all hidden
columns are allowed to be null or if triggers are provided to populate them with default values.
Developers are responsible for implementing appropriate error handling if a user’s update violates a
constraint on a hidden column.

e Multi-table views: At present, the SDSs implemented in the COE cannot consistently support data
modifications through views of more than one table. Developers should implement such updateable
views in applications. These views should be accompanied by comparable read-only views of the
individual tables.

A view is dependent on the objects referenced in its defining query. All of these objects must exist, and the
required privileges to these objects must have been granted to the owner of the view before the view is
created. Views will be created in a database segment as part of its install process.

Legacy Views are views created to support applications written against earlier versions of a database object.
Such views make the object appear as it did in an earlier version of the database segment. They support
read-only legacy applications. Applications that need to update data will not be able to use legacy views.
Code modifications required to update data in the new data structures will need to be coordinated with data
structure changes.

DIl COE I&RTS: Rev 3.0 July 1997 95

Runtime Environment

The decision whether to require Legacy Views rests with the DIl COE Chief Engineer working with the

affected program’s Chief Engineer on a case-by-case basis, although developers may choose to do so on
their own. In most cases, DISA will require Legacy Views only for Shared or Universal public databases
whose tables support a large number of read-only users.

When Legacy Views are provided, they must be implemented in the following manner. When a database
table is created, a view that maps directly to the table must also be created. When the database table is
modified, the view of its previous version is also modified so that applications accessing the view are
unaware of them, and a view that maps directly to the new structure is created. This method allows
applications that access the table to continue to operate if immediate source code modifications are not
possible. Applications must eventually be modified, but in the meantime views can be maintained to

support previous versions of the table. Figure 4-8 demonstrates the use of legacy views across four versions
of a database table.

861 COE I&RTS: Rev 3.0 July 1997

Runtime Environment

€00 S3Al9 WNSHYOS
MmalA KoeBa) ybnouyl saanb snyy ‘parepdn jou O uopedyddy e

200 S3Alg” WSHOS
MmalA AoeBa) ybnoiy) saianb snuy ‘parepdn jou g uoned|ddy

MAIA 700 S3AIE” WSHOS
ybnouy) sauanb sny ‘parepdn aqg isnw v uoneed|ddy

MBIA J081Ip Se pajeald 00 S3AIF WSLHOS -

maln Aoeba| 01 pauaAuod €00 S3AIF NSLHOS
payepdn main Aoefdl 200 S3AIT NSLIOS «

pajajap maiA Aoebs| T00 S3AI9” WSLHOS »

paseajal S| a|qe} SAAIF” WSLHOS dU} JO 0’ UOISIBA «

ol |
v 017e0jdd v Lo o1 jdd v
Loneo) dd Aoebe KoeBa
=== =" 1
MIA MBI MBI 1 MOIA |

0053018 WS140s| 00 S3AIE WSLHOS| 007 S3AIE WSLHOS| 00 S3AIE” NSLHOS

N

areL
3019 NS LHOS]

¥ UOISIBA

T00 S3AIg WSHOS MalA Aoeba)
ybnolyy sauanb sny) ‘parepdn jou v uomeyddy

200 S3AIg WSHOS MalA Aoeba
ybnouy) sauanb sny) ‘parepdn jou g uoned|ddy .

alnpnis
€ uoisian Aianb o0y parepdn D uoned|ddy .

M3IA J031Ip B Sk pajeald €00 S3AAIF NSLHYOS «
MBIA

Koeba| e 0) paLBAUOD 200 SIAITG NSLHOS

pajepdn maia Aoeba) T00™S3AIE WSLHOS -

pases|al
SI 9|qe) S3AI9” IWSLHOS 8} O 0'E UOISIBA

T00 S3dIN WSHOS
maln AoeBia| ybnoiyl sauanb
11 'sny} ‘parepdn jou v uopeo)ddy

aimonJs a|gel S3AI9 INSLHY0S
ayy Jo z uoisian Aianb oy
payepdn are O pue g suoneolddy

MBIA J03IIp B

se pajeald z00 S3AIF NSLH0S
MaIA AoeBa) e 0} papaAU0D

SIM3IATO0 S3AIF WSLHOS

pases|al si 9|qe) S3AIF- WSLHOS
3} JO 0°Z UOISIBA

M3IAT00 SIAIN INSHOS
ay1 ybnoiyy sjqel

S3Alg” WSLYOS ays Aianb
(0'g'y) suoneandde saiyl

a|gel S3AIE WSLHYOS

ay) oy buiddew

103JIp © S| Jey) payeald

SI MAIA S3AIE- WSLHOS V
pases|al

sl 8|0el S3AIF WSLH0S
91 JO O'T UOISIBA

P00 S3a19 WSL¥Og| fo0 S3AIE NSLYOS| f00 S3AlE” WSLHOS)

00 S3A19 WSLHOS| fo0 S3alg” WSLHOS

| v v
o) oeoljddv} 01720 jdld v o) a 017e0 jdd v o} g v
Jiofeo | dd foefie Koeba Logeoiddy] oneoiddy foefie uoreodd v poreoiidd v poeoiiddvg

MOIA MIA MOIA MRIA MIA MOIA

00 S3A19” WSLHO0Y

areL
3A19 NS 10

€ UOSBA

NS

oL
319 WS1H0Y

Z UOSBA

areL
3A19 WS1H0Y

T UOS A

Figure 4-8: Legacy Views

View names for legacy views shall consist of the table name followed by a three-character table sequence
number. They will be amaximum of 30 characters (uppercase |etters, numbers, and underscore). Example

97

July 1997

DIl COE I&RTS: Rev 3.0

Runtime Environment

legacy viewsare Nl D_ACFT_003 and | DBI ND_001, where thefirs is aview representing the third
release of the NID aircraft table and the second is a view representing the first release of the Integrated
Database (IDB) individualstable.

4.3.4.4 Ruleson Database Objects

Rules on database objects incorporate several different concepts. Their underlying purposeis to maintain
database integrity through the enforcement of the constraints and business rules of the database.

For purposes of this document, the following definitions apply. Constraints are restrictions on data
eementswith respect to the values they may contain. For example, a country-code data element could be
constrained to the set of Defense Intelligence Agency (DIA) prescribed two-character country codes.
Business Rules arerestrictions that occur in the context of database operations that affect multiple
interrelated objects and elements or that are beyond the ability of a constraint to express them. For example,
any update to a facilities table may require that an entry be written to an audit table recording the ID of the
user making the change and the time at which it was made.

Within the SDS, developers may use DBMS constraints, stored procedures, rules, packages, or triggersto
implement either constraints or business rules. The choice among these will depend on the capabilities of
the COTS DBMS being used.

4.3.4.4.1 Constraints

Developers should define all entity integrity constraints and referential integrity constraints that apply to
their database schemas. The information in these constraints is vital for maintaining database integrity.
Entity integrity should be enforced whenever possible using default, unique values, and check constraints.
Domain Keys (e.g. the SQL Check constraint) should be used to maintain the validity of column values.
Unique columns should be constrained rather than indexed. While the DBM S may use an implicit index, as
Oracle does, to enforce uniqueness, defining the constraint clearly documents the database design for the
users. Database primary keys, foreign key constraints, del ete cascade actions, and update/del ete restrictions
should be used to maintain referential integrity.

Primary and foreign keys convert logical relationships that are implicit in the database design into explicit
relationships. Primary keys identify unique physical records. Foreign keysrelate primary keysto datain
other tables by requiring each value in a column or set of columnsto match thosein a primary key in the
referenced table. Foreign key constraints enforce referential integrity by preventing invalid data entry into
the database tables.

Where appropriate, constraints should be used to supply default values for columns. The
NULL/NOT NULL constraint must be explicitly stated for each column in al tables because different
DBMS implementations may behave differently with respect to nulls.

Constraints must be explicitly named. Constraint names must be meaningful and must not use reserved
words or default names. They may not exceed 30 characters (uppercase letters, numbers, and underscore).
The recommended naming convention is

<tabl e nane>_<cons>

where table name’ is the nhame or abbreviated name of the table or table and columns involved in the
constraint andcons is PK for a Primary Key, FK for a Foreign Key, or CK for a Check constraint. Foreign
key constraint names should incorporate references to both tables. Examples of constraint names are

| DBF_PK, EW RD1_EM T_FK, andACFT_USR_CTRY_CK.

In most cases developers will wish to create their constraints after the data fill has been completed in order
to speed up the fill process. The implicit index that accompanies a Primary Key or Unique constraint will

881 COE I&RTS: Rev 3.0 July 1997

Runtime Environment

dow the datafill significantly. Constraints should not normally reference data objects that are outside the
database segment. See bel ow for methods to implement inter-database constraints when they are needed.

Constraints should till be included in a database segment even when they cannot be enforced. If

developers must alow invalid data itemsinto their database, as may be the case when processing red-time

data, they may not be able to enforce declarative constraints without 1osing information. Constraints should

still be defined, but disabled (e.g., by using Oracle’s disable constraint command) so that users and
administrators can understand the database schemRellraseNot es segment descriptor and the
comments on the object stored in the data dictionary shall state that these constraints are deliberately
disabled so the site’s DBAs know that it is intentional. If constraints must be left disabled, the developers
are responsible for providing tools that support cleanup of invalid items.

4.3.4.4.2 Stored Procedures

Database stored procedures and functions consist of a set of DBMS commands (e.g. SQL statements, and
Oracle PL/SQL or Sybase Transact-SQL constructs) that are stored in the database and can be invoked by
an application to perform a task or a set of related tasks. Stored procedures and functions can be used to
obtain tighter control of databasecass. In addition, they improve performance by reducing the amount of
information that travels over a network and because they do not require interpretation prior to their
execution. The use of stored procedures and functions also reduces memory requirements as only a single
copy is loaded into memory for execution by multiple users.

Stored procedures are used to maintain database integrity or to enforce business rules when the constraints
imposed are too complex for simple SQL constraints. These procedures are stored in the database and can
be executed from any environment in which an SQL statement can be issued. A maximum of 30 characters
(uppercase letters, numbers, and underscore) may be used for the stored procedure name. Procedure names
should incorporate the name of the object(s) they modify and some meaningful indication of their functions
without using reserved words. Two examples of stored procedure nanieatdPDATE PROC and
GSORTS_FETCH _UNI TI D.

Stored procedures should not normally reference data objects that are outside the database segment. See
below for methods to implement inter-database stored procedures when they are needed.

Database stored procedures are installed after all of the database objects defined in the database segment
have been installed. In general, the stored procedures in a database segment should support integrity checks
that are typically invoked by triggers. A database segment may also provide stored procedures that perform
standard access functions against the segment’s tables. These access functions can provide better
performance and reduce maintenance efforts if underlying structures are changed.

4.3.4.4.3 Triggers

A database trigger is a procedure that is automatically executed when a triggering event occurs on the
associated table. A trigger can only be defined on a table and will fire whenever the associated event occurs
on the table or a view of that table. The action of a database trigger may cause another database trigger to
fire. Triggers can be used to generate derived column values, implement complex security rules, perform
auditing, maintain table replication, prevent invalid transactions, and enforce referential integrity.

Most triggers will be used to maintain database integrity. Others may be used to signal or send data to
other, interrelated or dependent database segments. Triggers may also be used to support the proper
replication of data and to perform data conversions. They are not to be used to start application processing
based on data entry. Trigger names must be meaningful (the table name and trigger type should be part of
the trigger name) without using reserved words. They may use a maximum of 30 characters (uppercase
letters, numbers, and underscore). An example of a trigger narAE IREMARKS_UPD_TRI GGER.

DIl COE I&RTS: Rev 3.0 July 1997 99

Runtime Environment

Triggers should not normally reference data objects that are outside the database segment. Database
segments should not install triggers on data objects outside the segment. See below for methods to
implement inter-database triggers when they are needed.

Database triggers are ingaled after dl of the database procedures are ingalled. This order is prescribed

because triggers may invoke stored procedures. A trigger’s body may contain DBMS commands (e.g.
Transact-SQL or PL/SQL blocks) or it could invoke stored procedures to perform the same functions. The
use of stored procedures to support triggers is recommended for performance and maintainability.

4.3.4.5 Indexes

An Index is an optional structure associated with a table that is used to quickly locate rows of that table or
to ensure that a table does not contain duplicate values in specific columns when a uniqueness constraint
cannot be used. Indexes speed up retrieval when applications query a table for a range of rows or for a
specific row by providing a faster access path to data. Indexes are logically and physically independent of
data. The creation or deletion of an index may occur at any time and does not affect the data stored in the
associated table. Furthermore, creation or deletion of indexes only affects the speed of data retrieval, but
does not prevent any applications from functioning. Once created, indexes are maintained by the RDBMS
and are automatically updated when the data change due to addition, deletion or modification of rows. The
presence of many indexes on a table decreases performance when inserting, updating, or deleting data as
the associated indexes must also be updated. Indexes also require storage in the DBMS; the use of multiple
indexes requires more storage.

Index names must be meaningful without using reserved words. A maximum of 30 characters (uppercase
letters, numbers, and underscore) may be used for the index name. It is recommended that the index name
incorporate a reference to the table and column for clarity. Developers should review the capabilities of the
DBMS before indexing small tables (less than 4000 rows). Indexing small tables can actually hurt
performance if the DBMS searches the index instead of reading the entire table into memory. The DBMS'’s
query optimizer may ignore indexes on small tables. Indexes should not be used in place of Primary Keys
or Unigueness constraints.

When considering a column or group of columns for an index, keep the following guidelines in mind:

* Indexes should not be used in place of primary keys or uniqueness constraints. If the DBMS treats
nulls in a manner that prohibits the enforcement of these constraints, developers should use a unique
index to maintain data integrity.

« To minimize lock/device contention when insertions occur frequently, clustering should always be
performed on a key that is statistically more “random” than other keys and is usable in many queries.
This is generally not the primary key. Prime candidates for clustering keys include columns accessed
by range or used in Order By, Group By or Joins. For example, Date/Time could be a good index key
for event data. Long strings generally make poor indexes.

* Too many indexes can hurt performance of inserts, deletes, and updates.

« Prime candidates for non-clustered indexes are columns used in queries when the data being accessed
is less than 20% of the data in the column.

« Keep the size of the key as small as possible to improve index storage and data retrieval.

* Indexes help select statements and hurt inserts/deletes. Consider when most of your operations will use
the index and, if so, whether the overhead required for the index is worth it.

» Storage of indexes in a separate data store can improve database performance.

D00 COE 1&RTS: Rev 3.0 July 1997

Runtime Environment

« The ordering of columns in SQL ‘where’ clauses may affect the behavior of the DBMS query
optimizer. Check the DBMS vendor’s documentation to identify such effects and use the vendor’s
evaluation tools to assist in optimizing DBMS commands.

e Consider using the various index types offered by the DBMS. B-Tree indexes are good for range
selections and ordered retrieval, but can suffer performance problems when used on large sets of
ordered, sequentially appended (e.g. time series) data. Hashed indexes are fast, but do not easily
support ordered retrievals. Bit-mapped indexes are efficient for binary fields like sex.

4.3.5 Database Roles

A database role, in the general sense, is a group of access privileges for database objects. These roles
implement the discretionary access controls discussed in subsection 4.2.5. Database roles also simplify the
management of user privileges within the DBMS. They are created by the database segment developers or
the developers of applications accessing databases to define sets of access privileges that can be given to
users by their sites’ DBA. Role names must be meaningful (the database or application name should be part
of the group or role name) without using reserved words. They may be a maximum of 30 characters
(uppercase letters, numbers, and underscore). Developers should strive to associate roles and their
privileges with the applications accessing the database. Each role should have only the privileges needed by
the application it supports.

As discussed in subsection 4.2.5.2, active database permissions should be limited to the minimum set
needed for the session in progress. Such permission sets are specific to an application’s connection to the
database. This means that each application requicoesa to any database object must have a well-

defined database role that includes only the privileges needed by the application and that the role/group be
granted only to users who are authorized to run the application. In this case, it is the responsibility of the
database segment which supports an application’s software segment to create the specific database role for
the application and to connect to the DBA account (se€G&€r onpt Psswd APl in Appendix C) to

assign the grants on the required objects to the newly created role. The DBA account has all necessary
privileges to assign grants on any object to any role.

A Shared database segment must provide generic “read-only” roles because of the dependencies of other
segments upon it; it may provide “read/write” roles. Developers may create more generic roles or groups

that consist of a set of privileges (such as read-only or read/write) on a group of objects (such as all of the
objects in a database or some subset of them). Such roles are usually created to provide read-only access to
an entire database for users of browsers or query builder tools. In this case, it is the responsibility of the
database segment that creates those objects to also create the generic role/group and assign the grants on the
required objects to the newly created role/group. Such generic roles are useful when widely used, large,
read-only databases such as the NID must be implemented. Such generic database roles should be used
with caution as they may grant applications more privileges than they really need. Generic database roles
should seldom, if ever, be used to grant write permissions. Database developers who implement generic
roles or groups must balance the advantages this type of role against the risks of unnecessary or excessive
privileges.

Consider the following example. A database segment named TEST has five tables: MASTER, DATAL,
DATA2, REF1, and REF2. Two applications, APP1 and APP2, areiatgsbeith the segment. The

segment should have two read/write roles, TEST_APP1_RW and TEST_APP2_RW, one to support each
application. It could also, optionally, have a read-only role, TEST_RO, for users of browser tools. If only
one read/write role were created, then users of APP1 could inadvertently naadithhat should only be
changed using APP2 and vice versa.

When applications are not developed by the database segment developer, the application developers are
responsible for creating the roles required to access the database through their applicationes3he a
requirements for such roles must be defined by the application developers and included in the information

DIl COE I&RTS: Rev 3.0 July 1997 101

Runtime Environment

provided during Segment Registration as discussed in Chapter 3. The permissions required by application’s
database roles are subject to review by DISA and by the associated database segment’s sponsor. These
roles will be granted the privileges required to run the application. These privileges may include: delete,
insert, select, and update for tables and views; and execute for procedures, functions, and packages. Grants
of privileges to roles are discussed in the next section.

In order for the privileges on objects to be assigned to a role, the grantor must have permission to do so,

and those database objects must exist. When application developers define database roles to support their
applications and those roles are not part of the principal database segment, the roles and the grants that
enable them become part of a database segment that is dependent on the database segment or segments that
create the referenced objects. See subsection 4.3.7 for more information on inter-database dependencies.

Database roles shall not be granted to DBAs. Their administrative privileges already allow them to grant
roles to users without owning the roles. The database roles that are part of the COTS DBMS shall not be
altered by developers.

4.3.6 Grants

Grants are the permissions on database objects that allow users to access data they do not own. When a
database object is first created, the only account that can access its contents is the owner of that object.
Users must be explicitly granted permission to access an object. Privileges that can be granted include:
delete, insert, select, and update for tables and views; and execute for procedures, functions, and packages.
Privileges that should not be granted include index and alter for tables. Grants allow the DBA to administer
and the DBMS to enforce the discretionary access controls required. As discussed in the section on
database roles, developers should grant only the minimum set of permissions needed for the applications
that access their databases. Grants should be made to roles/groups and not to individual users.

Consider the previous example. APP1 is used to create and modify records in DATAL. It uses MASTER
and REF1 as lookup tables. APP2 has the same function for DATA2 using MASTER and REF2 as lookup
tables. The read/write role associated WiP1, TEST_APP1_RW, should be granted the select privilege
on MASTER and REF1, and select, insert, update and delete on DATAL. It should have no privileges on
REF2 or DATA2. TEST_APP2_RW, the read/write role for APP2, would have select on MASTER and
REF2; select, insert, update and delete on DATAZ2; and no privileges on DATAL or REF2. TEST_RO, for
users of browser tools, would have the select privilege, only, on all five tables.

Granting data access to DBMS ‘PUBLIC’ users is prohibited. Granting da&ssaprivileges to user

accounts with the ‘GRANT OPTION’ or granting administration privileges on database roles is prohibited.
Developers shall not make grants of application-level permissions to DBA accounts or to database roles
used for DBMS administration. Where segments’ applications or databases need special permissions on
DBMS objects (e.g. query Oracle’s ‘v$’ tables), the developer must request them from the DIl COE Chief
Engineer. Such grants should be kept in a separate database definition script (to be executed by the DBA)
within the database segment that needs them.

4.3.7 Inter-Database Dependencies

Inter-database dependencies occur whenever database objects in a segment are dependent upon objects in
some other database segment. A database object is a dependent object if it references any other object(s) as
part of its definition. When a dependent object is created, all of its references to other objects must be
resolved. If it has dependencies on non-existent objects, the dependent object may not already have been
created or it may have to be validated when the objects it references come into existence. The creation of a
dependent object may also fail if its owner does not have the appropriate access to all referenced objects. If
the definition of any of the referenced objects is altered, the dependent object may not function properly or
may become invalid.

D02 COE I1&RTS: Rev 3.0 July 1997

Runtime Environment

Dependent objects that reference objects created, managed, and maintained by the same database segment
do not introduce inter-segment dependencies. In contrast, dependent objects that reference objectsin other
segments do add compl exity to the installation, de-ingtallation, administration, and maintenance of a
database segment. Before using dependent objects, devel opers must balance the advantages of dependent
objects againg the disadvantages of introducing segment dependencies.

Database segments with intersegment dependencies sometimes benefit from smaller storage and reduced
data redundancy. Using data objects that bel ong to other segments frees up the storage that would otherwise
be used for replicas of those objects. When replicated objects are eliminated, changes to those objects need
not be propagated across multiple database segments. At the same time, having only one copy of awidely
referenced table islikely to increase data quality and currency. Eliminating copies of data objects also
reduces the processing load on the SDS by diminating duplicate updates when changes are made.

Such dependencies also affect the modularity and scaleability of the SDS. Dependent segments must be

installed after the database segment they reference. Further, asisthe case with other segment types,

dependencies can easily propagate when placed on segmentsthat are, in turn, dependent on other segments.
Furthermore, when inter-segment dependencies are defined, circular dependencies can be created. A

circular dependency exists when two segments depend on each other. In such cases, neither segment can be
installed because both require the other to be installed first. If acircular dependency cannot be resolved,

then the two segments may have to be merged into asingle, larger segment or the dependent code can be

moved to a third segment. The dependency of one database segment on another segment’s data objects
could require the installation of multi-gigabyte databases so that one or two of their tables can be used by
some other segment.

Because of the tradeoffs involved in the employment of dependent objects, their use in DIl systems is
subject to review and approval of the DIl COE Chief Engineer.

Where inter-database dependencies are needed they shall be implemented such that the object(s) creating
the dependency are owned by the database segments that they belong to. This means that a foreign key
constraint belongs in the segment with the table it constrains, not in the segment with the table it references.
A post-update trigger added to a table belongs in the segment with that table, not in the segment of the table
it updates. Such dependencies may have to be placed in separate database segments that modify the
segment owning the object that creates the dependency. See Chapter 5 for more information on segmenting
databases that have dependencies RByii r es descriptor for such database segments must identify all
dependencies on other database segments. In additi@atthbase descriptor must be used to identify

the data object(s) being referenced in other segments so that DISA can choose the most effective
segmentation strategy for databases that are widely used.

The following sections describe how developers should implement inter-segment dependencies that may
occur through the use of dependent objects, constraints, and database roles.

4.3.7.1 Data Objects

Database segments will have dependent data objects (tables or views) when their information needs can be
partially satisfied from tables or views contained in other database segments. If an external table fully
satisfies the information needs, it should be referenced directly. Developers may use a dependent view to
extract subsets of information from external tables or views or to change the presentation of information
(e.g. change units of measure or combine columns). Developers may use views to combine internal tables
with external objects to provide information supersets. Also, a table could reference an external object
either as a source of constraints or, through a trigger, as a provider of data.

Names of objects created in other schemas must identify the inter-database linkage. Otherwise they are
subject to the naming restrictions of their object type. Developers are responsible for ensuring that their
object’s names do not conflict with those already in the schema.

DIl COE I&RTS: Rev 3.0 July 1997 103

Runtime Environment

A table will be dependent on another database segment if its constraints reference objectsin that other
segment or if it is populated or maintained using atrigger based on an external object. Developers may also
create atable that isa superset of an external object to avoid creating and maintaining partially redundant
objects. That table would then be combined with aview that joinsit with the external object. Devel opers
must use an ‘outer join’ when defining such a view/table combination unless appropriate triggers are
created to prevent decoupling when updates occur to either the internal or external table.

A view that references a table (or view) outside its own segment is dependent on the database segment
containing the base table (or view). Once such a view has been created, it will become invalid and have to
be recreated if its base table (or view) is modified, renamed, or dropped. Any privileges or synonyms on the
invalid view also become invalid until it is recreated.

Developers shall not create indexes on objects in other database segments. Indexes have significant impact
on system performance. While they speed retrieval of records, indexes slow updates to tables. The effect of
uncontrolled index proliferation could dramatically damage the overall functioning of a DIl system. If
developers desire indexes on tables in other database segments, they must request them from the SHADE
Chief Engineer. DISA will work with the other segments’ sponsors and developers to assess the effect of
additional indexes. If, based on overall requirements, the request is approved, the segment responsible for
the creation of the table will be modified to also create the index(es) required by other segments.

4.3.7.2 Rulesin Other Databases

Database segments have dependent constraints or business rules when their integrity constraints or
operations involve objects from other segments. Such rules may include foreign keys that reference another
schema’s tables or triggers that propagate updates based on another schema’s transactions.

Any rules — whether they are constraints, triggers, or procedures — shall be created in the schema of the
object they are attached to. Names of rules created on other schemas must identify the inter-database
linkage as well as the rule’s function. Otherwise, they are subject to the naming restrictions of their object
type. Developers are responsible for ensuring that their rule names do not conflict with those already in
some other schema.

Developers may create constraints in their own schema that reference objects in other database segments.
They may not create or modify constraints on objects in other schemas. Such constraints could invalidate
otherwise legal updates to the other database. When additional constraints are needed on objects in other
database segments, developers must request them from the SHADE Chief Engineer. DISA will work with
the other segments’ sponsors and developers to assess the effect of these constraints. If, based on overall
requirements, the request is approved, the segment responsible for the creation of the table will be modified
to also create the constraint(s) required by other segments.

Developers may create triggers and stored procedures or functions on objects in other schemas as long as
they do not modify or update the other database’s information and do not change the constraints or business
rules of the other database. It is permissible, for example, to use a ‘post-insert’ trigger to copy data from an
external data object to one in the developer’s database segment. It is prohibited, by contrast, to use such a
trigger to change data in that other segment’s table.

Excessive use of triggers can result in complex interdependencies that may be difficult to maintain. When
implementing a specific function via triggers, developers must keep in mind that a database transaction will
rollback if execution of the associated trigger(s) is notessful. Trigger developers must implement

exceptions to handle errors or unexpected results that may occur during the execution of a trigger. These
exception handlers must ensure that a trigger fails ‘open’ and allows the owning segment’s database
transactions to complete regardless of the processing of the dependent trigger. If additional triggers and
stored procedures or functions are needed in other database segments, developers must request them from
the SHADE Chief Engineer. DISA will work with the other segments’ sponsors and developers to assess

D04 COE 1&RTS: Rev 3.0 July 1997

Runtime Environment

their effect. If, based on overall requirements, the request is approved, the segment owning the object
affected by these triggers, stored procedures, or functions will be modified to incorporate them.

4.3.7.3 Database Roles Spanning M ultiple Databases

Deve opers may need to create roles whose permissions span multiple databases in order to take advantage

of their information and to correctly represent applications’ information needs. Since database roles
implicitly are created at the database server level, which segment they belong to is irrelevant. However, all
objects they reference must exist before the role may receive its grants. Accordingly, such roles shall be
part of a dependent database segment as discussed in Chapter 5. That segment is dependent on every
segment whose objects it references. It must list all of the segments ufdenits es descriptor. See

Chapter 5 for more discussion of tRequi r es descriptor.

DIl COE I&RTS: Rev 3.0 July 1997 105

Runtime Environment

Thispageisintentionally blank.

5. Runtime Environment

This chapter describes the software configuration for the COE runtime environment. All software and data,
excepting low-level components of the COE kernel, are packaged as segments. A segment is a collection of
one or more software or data units most conveniently managed as a unit. Segments are constructed to keep
related units together so that functionality may be easily included or excluded.

There are six segment types corresponding to the different types of components that may be added to a
system:

1. COTS: A segment totally comprised of commercial off-the-shelf software.

2. Account Group: A segment that serves as atemplate for establishing aruntime environment for
individual operators.

3. Software: A collection of executables, shared libraries, and static data that extend the base
functionality and environment established by an account group.

4. Data: A segment composed of a collection of data files for use by the system or by a collection of
segments.

5. Database®: A segment that isto beinstalled on a database server under the management of the DBMS
and ownership of the DBA. A Database segment can only be installed on a database server and the
installation tools enforce this. Note that a database client application segment can beinstalled on any
platform and usualy is a software segment type.

6. Patch: A segment containing a correction to apply to another segment whether data or software. The
corrections entail replacing one or morefiles.

In addition, segments may have attached characteristics, called segment attributes, which serve to further
define and classify the segment. There are six segment attributes™:

% Database server segments are supported only on UNIX servers for this release. Database application
segments may be created for either the UNIX or NT environment.

%1 Subsection 5.5.1.10 discusses how to indicate segment attributes with the SegName descriptor. Segment
attributes are noted by the appropriate parameter within the $TYPE keyword of the SegNane descriptor.

D06 COE 1&RTS: Rev 3.0 July 1997

Runtime Environment

1. Aggregate: A collection of segments grouped together and managed as an indivisible unit. (This
implies that segments within an aggregate cannot be installed across separate platforms.) The segment
whose attribute isindicated as AGGREGATE is called the parent and is considered to be the “root”
segment. The parent segment name is the name presented to an operator as the name of the aggregate.
An aggregate can have only one parent segment.

2. Child: A segment that is part of an aggregate, but is subordinate to a single segment designated as the
parent. An aggregate can have multiple child segments.

3. COE Component: A segment that implements functionality contained within the COE, as opposed to
a mission-application segment.

4. DCE: A segment that implements either a DCE server or a DCE client application. The DCE attribute
must be specified for any segment which uses DCE segment descriptors.

5. Web: A segment that uses Web-based technology to create the application. A Web segment is either a
Web server, or a Web-application segment (e.g., a client application). A user requires a Web browser
to access Web-based segments.

6. Generic: A segment that is to be automatically added to all “usual” account groups (see
subsection 5.4.11). This feature allows a segment to participate in multiple account groups without the
need for the segment to explicitly name each account group.

Note: The attributes listed here are often used in the vernacular as if
they are segment types (discussion of an aggregate segment, a
COE-component segment, a Web segment, etc.). Technically
such usage is incorrect because these are attributes and not types.
When discussing segments by attribute, it is implicitly
understood that there is an underlying segment type, usually
software.

Segment installation is accomplished in a disciplined way through instructions contained in files provided
with each segment. These files are cadipinent descriptor filesand are contained in a special
subdirectorySegDescr i p, called thesegment descriptor subdirectory. Sections within the segment
descriptor files are callesbgment descriptors, segment descriptor sections, or justdescriptors. The

segment descriptor files embody a technique that allows a segment to “self-describe” itself. That is, the
segment descriptor files contain pertinent information describing the segment, such as the segment name
and type. This information is used by other software in the COE and other segments thatcosss to a
functionality contained within the segment. But the descriptive information is also used by people to aid in
the integration process, to aid in security analysis of the segment, or in configuration management.
Installation tools process the segment descriptor files to create a carefully controlled approach to
adding/deleting segments to/from the system. The format and contents of the segment descriptor files are
the central topic of this chapter.

Principles contained in this chapter are fundamental to teessful operation of the COE and achieving

DIl compliance is largely determined by how well developers apply the details given in this chapter.
Appendix B summarizes the compliance requirements stated in this chapter into a series of checklists
organized by Category 1 compliance levels. Developers are required to adhere to the procedures described

The parent for the aggregate is designated bAGEREGATE parameter. The Child attribute is indicated
by the CHI LD parameter. COE Component is subdivided into @& CH LD and COE PARENT
parameters. Similarly, the Web attributed is subdivided int&\Ei2 APP andVWEB SERVER parameters.
Finally, the Generic attribute is indicated by GENERI C parameter.

DIl COE I&RTS: Rev 3.0 July 1997 107

Runtime Environment

herein to ensure that segments can be installed and removed correctly and that segments do not adversely
impact one another. Unless otherwise noted, all requirements apply to both UNIX and NT.

Note: In this chapter and throughout the I&RTS mention is made of
occasions when approval is required by a Chief Engineer. Unless
otherwise stated, this means the DIl COE Chief Engineer for
COE-component segments and mission-application segments
that affect interoperability. All other references refer to the Chief
Engineer responsible for the mission-application segment (e.g.,
GCCS Chief Engineer, ECPN Chief Engineer). The Chief
Engineer is not necessarily a DISA engineer, and will not be for
the majority of the mission-application segments. Likewise, use
of the term SSA refers to the responsible SSA unless otherwise
qualified.

D08 COE I1&RTS: Rev 3.0 July 1997

New and Obsolete Featur es

5.1 New and Obsolete Features

This DIl COE release includes a number of improvements over previous COE releases. A list of the more
significant improvements is provided here for developers who are already familiar with a previous DI
COE release.

The present release is backwards compatible with previous DIl COE re eases. Segments presently in use do
not require modification to work with the features described here. However, certain features from previous
JMCIS and GCCS COE releases are now obsol ete and support for them will eventually be phased out.
Obsolete features are listed in a subsection below.

All of the features from the previous | & RTS have been preserved. Segments which have been migrated to
any version of the DIl COE do not require additional work to be compatible with thisissue of the |&RTS
Compliance-level requirements have not been increased with thisrelease, but the compliance criteriain
Appendix B have been reworded and reorganized for clarity.

Periodic modificationsto the DIl COE and the & RTS are made for several reasons:

e toaddressnon-UNIX environments,

* toalow extension to other problem domains,

* to provide support for new and emerging technol ogies,

e togeneraize the COE concept,

* toimprovesiteinstallation and administration of segments,
« tosmplify or clarify certain segment descriptor files,

» tofurther reduce integration problems,

e tomeet emerging mission requirements, and

* toapply lessons learned.

5.1.1 New Features

This subsection summarizes new features in this rel ease that were not present in the previous |&RTS
release. Its purposeis to serve as a handy reference of new features for devel opers already using the DI
COE.

» Database applications are supported through SHADE. Descriptor information is provided in this
chapter.

* The concept of data scope (local, global, segment, etc.) is extended to encompass database scope (e.g.,
unique, shared, universal).

e Thedraft PC-based COE from the previous | & RTS rel ease has been formalized and incorporated as
appropriate to this Chapter. It isfurther described in Chapter 6. Several new descriptors and keywords
have been added to support PC NT applications.

e Support isprovided to add NT registry entries (seethe Regi st r y segment descriptor).

e Standard NT fileextensgons (e.g., . TXT, . EXE, and . BAT) are supported for segment descriptor files.

» Web-based applications are supported and are described further in Chapter 7. Descriptor information is
provided in this chapter.

DIl COE I&RTS: Rev 3.0 July 1997 109

New and Obsolete Featur es

e Guidance and support for DCE applicationsis provided. DCE-based applications are described further
in Chapter 8. A new set of descriptors (DCEC! i ent Def and DCESer ver Def), aDCE segment
attribute, and several new keywords are provided to describe DCE segments.®

» The$KEY keyword is added to enforce certain requests (such as installation with “root” privileges)
that require Chief Engineer approval.

* The location for shared libraries is now specified (i.e., in the segnient'ssubdirectory).

* Child components in an aggregate may now have a conditional load attribute. This is described more
fully below, but it allows a child segment to be loaded only if it represents a newer version than what is
already on disk.

* The concept of a generic segment is added. A generic segment is automatically made a member of
every account group, except those which are character-interface-based. The segment may also specify
account groups that it is to be excluded from.

e Support is added for three new types of processes: RunOnce, Privileged, and Periodic. Privileged is
available for UNIX only, but the other two are available for both UNIX and NT. RunOnce processes
are executed the first time the system is rebooted, but not thereafter. Privileged processes are those
which require “root” permissions to execute. Periodic processes are the UNIX equivaleahof
processes, permitting a segment process to be run at specified intervals.

* Support is added to allow site installers to temporarily install a segment to test it before installing it on
the rest of the system.

e Support is provided to allow site administrators to create application servers that contain software for
multiple platform types. Support is included for “dynamic loading” of segments.

* Segments may add executables to run during the user profile creation/deletion just as with the account
creation/deletion process. Support is also added to allow executables to be run when a profile switch is
performed.

* The segment installer todlCEIl nst al | er, issues a warning to the operator performing the
installation if an attempt is made to load a segment that is an earlier version of one that is already on
the disk.

« TheCCEIl nst al | er tool maintains a status log of segments as they are loaded and provides the
ability to print the status log. The status log may also include output from scripts (such as
Post I nst al 1) that is normally sent tet dout orstderr.

A SEQU V keyword has been added to egNane descriptor. In effect, this allows a segment to be
known by an alias.

* TheHel p descriptor has been added as a placeholder for future expansion. Its purpose is to identify
“help files” within the segment and their format (UNIX man page, HTML, etc.).

* A ‘partial segmentation” process is defined (see subsection 5.7) that provides the advantages of the
segmentation philosophy but allows a COTS vendor’s distribution media and approach to be utilized.

* In this|&RTSrelease, DCE servers are available on UNIX platforms only. DCE client applications may
be on UNIX or NT platforms.

D0 COE 1&RTS: Rev 3.0 July 1997

New and Obsolete Featur es

5.1.2 Obsolete Features

The features listed below are being phased out because changes were required to extend the DIl COE to
address the Joint community, to address problem domains other than command and control, and to extend
to non-UNIX platforms. The previous release of the I& RTSindicated most of these items as obsolete. They
are collected here as aready reference. Thisrelease adds only one new requirement: usage of the SKEY
keyword. This keyword is used in instances where the |& RTS requires Chief Engineer authorization for
some requested feature, such as permission to create a COE-component segment. To preserve backwards
compatibility for existing features, Ver i f ySeg only issues awarning if the SKEY keyword ismissing. An
error isgenerated when the $KEY keyword is missing for new features. Devel opers should begin using the
$KEY keyword in al appropriate places because a future release will issue errorsinstead of warnings.

Support is ill provided for each of the obsolete items listed bel ow, but documentation for them has been
removed from thisrelease of the I& RTS. Segment devel opers and program managers should upgrade™ to
the latest DIl COE to ensure future compatibility. Support for the obsolete features may be removed from
thenext release. Thetool Ver i f ySeg will issue warnings when run againg old segments to identify
obsol ete features.

The MACHI NE environment variableisnow obsolete. The MACHI NE_OS and MACHI NE_CPU
environment variables should be used instead. Segment devel opers should not depend upon MACHI NE
being defined.

* Individua segment descriptor files are now obsolete. The Segl nf o descriptor file should be used
instead. It is divided into sections which correspond to the earlier individual descriptor files.
Conversion to Segl nf o isrequired for Level 8 compliance.

e Subdirectoriespr ogs and | i bs are now obsolete. Subdirectoriesbi nand |l i b should be used in
order to conform to conventional practice.

* Theold format of the Dat a segment descriptor is obsolete. The sizerequired is now specified in the
Har dwar e descriptor instead of the Dat a descriptor. Level 8 compliance requires uses of the new
format.

* Previous versions of the COE allowed DEI NSTALL, Post I nstal | ,andPrel nstal | torunwith
root privileges. This capability isno longer the default. The $ROOT keyword must be used instead and
Chief Engineer approval isrequired to run with root privileges.

* Previousreeases of the COE alowed a $PATHkeyword in the Menus and Reqr dScri pt s
descriptors. Thisisnow obsolete since the & RTS specifies the location of where files must be located
relative to the segment’s home directory.

e Segment descriptors ModNane and ModVer i f y have been replaced with SegName and
SegCheckSumrespectively. The SegTy pe descriptor file has al so been replaced by the SegNane
descriptor file.

* Inearlier releases, the parent segment for a child had to be listed in the Requi r es descriptor. Thisis
no longer required because by virtue of naming the aggregate parent in SegNarne, thereisanimplied
dependency. Child segments use the SPARENT keyword to explicitly name the aggregate parent. The
parent uses the $CHI LD keyword to explicitly name the children in the aggregate.

% The obsol ete features are primarily in the content and format of the descriptor files and should not require
any source code changes. The effort required to upgrade should be a matter of editing the segment
descriptor files and running Ver i f ySeg. A tool, Convert Seg, described in Appendix C is available to
automate the conversion to the extent possible.

DIl COE I&RTS: Rev 3.0 July 1997 111

New and Obsolete Featur es

e The $COVPONENT keyword is now obsolete and isreplaced by the $CHI LD keyword.

* Previous COE releases automatically provided a system menu bar. Applications must now use the
Executive Manager APIsto explicitly request a system menu bar.

D2 COE 1&RTS: Rev 3.0 July 1997

Disk Directory Layout

5.2 Disk Directory Layout

This subsection describes the COE approach for a standardized disk directory structure for all segments. A
standardized approach isrequired to prevent two segments from overwriting the samefile, creating two
different files with the same name, or similar issues that frequently cause integration problems.
Unfortunately, such problems are often not discovered until the system is operational in the field.

In the COE approach, each segment is assigned its own unique, self-contained subdirectory. This

subdirectory is called the segmerdssigned directory or the segment’some directory. The segment’s

assigned directory is established at segment registration time. It obviously must be unique among all
segments that are installed in an operational system. A segment is not allowed to directly modify any file or
resource it doesn’t “own” - that is, outside its assigned directory. Files outside a segment’s assigned
directory are calledommunity files. COE tools coordinate modification of all community files at

installation time, while APIs to the segments which own the data are used at runtime.

Figure 5-1 shows the COE directory structure. The root-level directory for the COEUmderneatit h,
disk space is organized into the following categories (note the close parallel to segment types):

COTS segment descriptors for installed COTS products

AcctGrps templates for establishing a runtime environment context

COE component segments constituting the COE

data subdirectory for shared (local and global) data files

Web subdirectory for Web-application segments

Segments one or more subdirectories for mission-application or other segments
USERS operator home directories with operator-specific items such as preferences
TOOLS collection of useful tools for the development environment

Web-application segments are collected into their own subdirectory to segregate them from all other types
of applications. This is to make it easier to identify and control them from a site-adminitration
perspective. The Web-server segment is a COE-component segment and therefore is locatedd@ktler the
subdirectory. Web-application segments may or may not also be COE-component segments, but they are
placed under theéb subdirectory in either case. If they are also COE-component segments, the
specialized processing performed for all other COE-component segments is done as well. The installation
tools automatically place Web segments in their proper location.

Figure 5-1 does not show other important disk directories, such as the/@iEXdirectory. The et ¢

directory is one of a family of related directories which contain UNIX system files. Other COTS products
may require specific directories as well, and there are other important system directories that are specified
to each operating system.

¥ Web servers and mission-application segments will likely be placed behind a firewall to administratively
restrict platforms that outside users can gatess to.

DIl COE I&RTS: Rev 3.0 July 1997 113

Disk Directory Layout

(1]

COTS| | AcctGrps| | COE | | data | |Web| | GSORTS| | JCALS| ... [USERS| | TOOLS
(OF] COE Web Operators
Extensions Component Applications
Segments
RTE shared Mission Apps Developers
Templates data and

Other Segments

Figure5-1: DIl COE Directory Structure

Developers may not directly alter or create files outside of their assigned segment directory. DII
compliance mandates strict adherence to this directive, with the following exceptions:

1

Temporary files may be placed in the operating system temporary® directory. For UNIX, thisisthe
directory pointed to by TMPDI R (typically / t np). For NT, use the gpplicable Windows API to locate
the temporary directory. However, disk space islimited so devel opers must use thistemporary
directory sparingly and shall delete temporary files when an application is done.

Segments may place datafilesin the/ h/ dat a directory, and arerequired to do so for shared data (see
subsection 5.4.4).

Operator-specific data files shall be placed in subdirectories underneath / h/ USERS (see
subsection 5.2.2).

Files may be added to the/ h/ TOCLS directory. Thisisacommunity directory for tools useful in the
development process. Segments shall not place any files in this directory which arerequired at runtime
since thisdirectory isnot ingtalled at operational sites. Thisdirectory is described in subsection 5.2.3.
Segments may request that the COE tools modify community files during the ingtallation process.

Segments may issue a request to modify a file to the segment which “owns” the file. This shall be done
through use of, and only through use of, published APIs.

As software is loaded onto the system,/thedisk partition may eventually run out of disk space. The COE
installation software will automatically create a symboliciri preserve the logical structure shown in

® For UNIX, the COE deletes all files in the temporary directory when the system is rebooted. This does
not occur for NT system. Developers should make it a habit to delete all temporary files when they are
finished and not rely upon the operating environment to delete them. This will ease porting problems and is

a

matter of good programming practice.

% Symbolic links are calleshortcuts in NT. They are not identical concepts but are sufficiently similar for
this discussion.

D14 COE 1&RTS: Rev 3.0 July 1997

Disk Directory Layout

Figure 5-1, and delete the link when segments are removed. Hence, Figure 5-1 represents alogical view,
not a physical view, of file and directory locations. Due to the potential need to rel ocate segments at
installation time based on available disk space, DIl-compliant segments must meet the following
reguirements:

* Segments shall userelative pathnames instead of absol ute pathnames.

* Segmentswhich use symbolic linksto point to files contained within the segment shall userelative
pathnames for the link.

e Segmentswhich use symbolic links to community files may use absolute pathnames aslong as (a) the
segment can determine the community file’s location at install time and (b) the segment can resolve
linking to a community file which may itself be a symbolic link.

* (UNIX) Segments which add an environment variable to the account group’s global runtime
environment for locating files within the segment shall use a single “home” environment variable.
Environment variables of this nature are normally required only when the segment files are to be
accessible by other segments. Addition of the “home” environment variable is done by the segment
installer through use of extension files and rmatstbe done directly by the segment.

To illustrate the last requirement, consider a segment that provides a continuous readout of time-until-
impact for a missile. Assume the segment’s assigned directigh\s sl e TDA and it's segment prefix is

MBLE. TheReqr dScri pt s segment descriptor (see subsection 5.5.2.22) is used to add the following to
the account group’scshr c file:

setenv MSLE _HOVE /h/ M ssl eTDA

MBLE HOME is called the segmentt®me environment variable. Static data within the segment can be
referenced b$MSLE_HOVE/ dat a while executables may be referencedMsLE_HOVE/ bi n. This
technique of using relative pathnames means that segments can be easily relocated at development,
integration, or installation time by modifying a single environment variable.

The last requirement stated above does not apply to environment variables defined for use purely within the
software development environment. The COE requires that the runtime environment be separated from the
development environment. This is typically done by separating environment variables and other settings
into physically separate files. The development environment is not present during runtime for the
operational system.

Also carefully note that the last requirement stated above applies only to the accountglobab’s

runtime environment, notlacal runtime environment. When a segment executable is launched, it inherits
the environment established by the account group template. It may then add to its local runtime
environment through techniques equivalent to thpi€Cenv () function.

The time-to-impact example illustrates additional COE requirements regarding definition of a home
environment variable.

* A segment home environment variable shall point to the segment’s assigned dineti@ipwer
level subdirectory (e.g., point to the directoty M ssl eTDA andnot to the directory
/' h/ M ssl eTDA/ Scri pt s).

* (UNIX) A segment home environment variable, if added to the global environment, shall be added
through an environment extension file (8er dScr i pt s).

« If a segment home environment variable is required, it shall be neegga ef i x_HOVE, where
segprefix is the segment prefix. Segments which use the same segment prefix must ensure that only

DIl COE I&RTS: Rev 3.0 July 1997 115

Disk Directory Layout

one segment defines ahome environment variable. This requirement assures that home environment
variables are uniquely named between segments.

* Segments shall not define aglobal environment variable that can be derived from an already-defined
environment variable. For example,

set env MSL_DATA $MBL_HOVE/ dat a

isredundant and is therefore not allowed because the expression $MSL_HOVE/ dat a can be used
wherever SMBL_DATA can be used.

« Segments shall not use the “~" character (or NT equivalent) to specify relative pathnames in the
runtime environment, whether to define a home environment variable or any other environment
variable.

UNIX allows statements of the form
source ~/ Scripts/.cshrc.tst

in . cshrc, .| ogin, and similar scripts. The “~" character is substituted at run time with the name of the
home login directory (as defined in thet ¢/ passwd file). Suppose this statement were contained in a

. cshr c file and, to prevent making duplicate copies and managing updates to this file, another segment
wishes to use the UNIXour ce command to include thiscshr c file in its own environment. Any

segment wishing to source the exampshr ¢ file must duplicate the same disk directory path structure
(e.g., must have &cr i pt s subdirectory underneath the home login directory) and must have a file called
. cshrc. t st underneath th8cr i pt s subdirectory. This approach is problematic in the runtime
environment because the login home directory is different for every operator, and leads to difficulties in
sharing environment settings.

Note: Developers should minimize the use of environment variables
whenever possible. The amount of memory the operating system
makes available to store environment variables is limited and is
therefore a scare system resource. Also, developers should bear
in mind that environment variables with shorter names require
less memory to store than environment variables with longer
names.

5.2.1 Segment Subdirectories

DIl compliance mandates specific subdirectories and files underneath a segment directory. These are
shown in Figure 5-2 for a general segment. The precise subdirectories and files required depend upon the
segment type. For exampleSar i pt s subdirectory is required for account group segments. The

Scri pt s subdirectory on a UNIX system will normally contain, as a minimunghr ¢ and. | ogi n

scripts. These serve as a template for establishing a basic runtime environment. For software segments, the
Scri pt s subdirectory contains environment extension files.

Some of the subdirectories shown in Figure 5-2 are required only for segment submission and are not
delivered to an operational site. Runtime subdirectories normally required are as follows:

dat a subdirectory for static data items, such as menu items or help files, that are
unique to the segment but will be the same for all users on all platforms

bin executable programs and shared libraries for the segment

D6 COE 1&RTS: Rev 3.0 July 1997

Disk Directory Layout

Scripts directory containing script files (Thisis usually not required for NT platforms
but, if required, the directory contains “batch” files.)
SegDescrip directory containing segment descriptor files.
h
Seg

SegDescrip Scripts data bin *man | |*include| || *lib| [*Integ

linstall IDBS files src I ntgNotes
SOutput
L | | |

INI'| |lcons| |Menus| |keytab| |fonts| |app-defaults] | Help TestSuite

* Required for segments with published APIs

* Required for segment submission

1 For Database segments only

2 Recommended location for sour ce code during development,
Required location for source code delivered to DISA.

Figure 5-2: Segment Directory Structure

The descriptor directoregDescr i p isalways required forevery segment. Its contents are defined in

later subsections. Segment developers may use arbitrary disk file structures during the development phase,
but segments shall conform to the structure shown prior to submitting a segment to DISA. It is a violation

of the COE to use a different subdirectory name to fulfill the same purpose as any subdirectory shown as a
required subdirectory, or to use a different runtime directory structure than that shown in Figure 5-2.

For example, the subdirectasy c is a recommended directory for the location of source code during
software development. Developers are free to use this name, or any other structure convenient for their
development practices. Theyst, however, use this directory name for source code delivered to the DISA
SSA.bi n is a required subdirectory and shall not be used for any purpose other than that stated in the
I&RTS

The distinction between tHger i pt s subdirectory and thiei n subdirectory is subtle. Files in the

Scri pt s subdirectory are used to establish attributes of the runtime environment. Scripts are used here in
the sense of traditional UNIX, X Windows, or Motif filesgshr c, . | ogi n, etc.) that are usually

referred to only during the login process or in the establishment of a separate runtime session. Files of this
nature are located in tf8r i pt s subdirectory. Executable files may be created as a result of compiling a
program or may be written as a shell. Files of this nature implement executable features of the segment and
are located in thbi n subdirectory.

DIl COE I&RTS: Rev 3.0 July 1997 117

Disk Directory Layout

Subdirectoriesi nst al | and DBS fi | es areonly used for database segments. Their useisdescribed in
subsection 5.4.5

Subdirectories underneath dat a depend upon whether or not the segment has menu or icon files, uses DCE
(subdirectory keyt ab), isNT-based and usesinitialization files (subdirectory I NI), or needs additiond
fonts or app-defaults. During segment ingtallation (for UNIX platforms) special processing is performed on
fileswithin theapp- def aul t s and f ont s subdirectories. See subsection 5.4.4 for more details. See
Chapter 6 for information on using.‘i ni " files on NT platforms.

The remaining subdirectories shown in Figure 5-2, excerfor are required in order to submit a
segment to DISA as follows:

i ncl ude subdirectory containing C/C++ header files or Ada package definition files for public
APlIs

lib subdirectory containing object code libraries for public APIs

man subdirectory containing UNIX “man” pages for public APIs

I nteg subdirectory containing items required in the integration process

Segments which do not contain public APIs need not submeit ude, | i b, orman subdirectories. For
those segments with public APIs, private APIs are not allowed inrtbeude subdirectory, nor are
private libraries allowed in thei b subdirectory.

Thel nt eg subdirectory serves as a convenient repository for information that needs to be communicated
from the developer to the integrator. The W8Qut put isrequired for all segments submitted. The
subdirectoryTest Sui t e isrequired for all segments which submit public APIs and is to contain source
code for a program(s) which exercises all APIs submitted. ThierfigNot es isrequired for all

segments submitted and contains a brief description of why the segment is being submitted (new features,
bug fixes, etc.). It also contains any special instructions that need to be communicated to the integrator for
proper segment integration and installation.

5.2.2 USERS Subdirectories

The COE establishes individual operator login accounts and provides a separate subdirectory on the disk
for storing operator-specific data items. The structure underneath this directory is created and managed
automatically as accounts are added and deleted by the Security Administrator software. Developers who
require access to any file maintained here (last profile selected, location of operator preferences files, etc.)
shall use COE-provided APIs to access them and not rely upon a particular directory or file structure.

All users with valid accounts will have a subdirectory undernelathtUSERS. The subdirectory name will

have the same name as the login account name. As shown in Figure 5-3, operator accounts may be global
or local in scope. Aocal account is platform-specific, whereglebal accounts are available from any

platform on the LAN.

D8 COE 1&RTS: Rev 3.0 July 1997

Disk Directory Layout

USERS
I
I I
local global
(@) (@)
Oper2 Ope B
Oper3 Ope C
I I
data data
I I
Prefs Prefs

Figure 5-3: Operator Directory Structure

The subdirectory Pr ef s underneath the operator’s data directory is used to store segment-specific operator
preferences. DIl compliance requires that segments store all operator preference datahere. A segment is

responsible for creating its own subdirectory (with the same name as the segment’s assigned directory) and
any required files when the segment first references the preferences data. The exact pathname for the

Pr ef s subdirectory will change each time a different operator logs in, thus segment software shall use
functions from thdPreferences Toolkit APIs to retrieve the correct pathname for the currently active

operator account.

Account group segments define the environment vari&l$eR HOVE andUSER DATA to point to the
correct operator directories. For the example in Figure 5-3, the following assignments would be made when
the user whose login account namé&per A logs in:

USER_HOME
USER_DATA

/ h/ USERS/ gl obal / Cper A
/ h/ USERS/ gl obal / Oper A/ dat a

Note thatUSER HOVE is not defined to bé h/ USERS/ gl obal / Oper A/ Scri pt s which is the login
home directory.

Segments, such as the Executive Manager, may need to reference menu and icon files for the operator’s
currently-defined profile. However, the directory location for these files is profile-dependent and will
change during a login session if the operator changes profiles. Segments must use functions contained in
the Preferences Toolkit APIs to determine the current profile. The environment varidBER_PROFI LE

is set by the account group segment during login, but segments must use APIs fPoefetlaces Tool kit

to access files or directories related to individual operators, or to determine the current user profile.

DIl compliance requires adherence to the following:

* Segments shall create subdirectories as needed under the opPragbisssubdirectory for storing
operator-specific data.

* Segments must work in an environment in which accounts are created and deleted. This requires that a
segment create and initialize missing operator-specific data files.

DIl COE I&RTS: Rev 3.0 July 1997 119

Disk Directory Layout

e Account group segments shall set the environment variables USER_HOME, USER _DATA, and
USER _PROFI LE. (Seefootnote below. Account groups must still set USER_PROFI LE inthe interim
to support legacy usage.) No other segment shall set or ater these environment variables.

* Segments shall determine the operator’s directory and profile exclusively througiefdrences
Toolkit APIs or the environment variableSER_HOVE, USER_DATA, andUSER_PROFI LE. ¥’

5.2.3 Developer Subdirectories

Software for the runtime environment is obtained by loading the desired mission-application segments and
the required COE components. But the development environment is provided separately as a Developer’s
Toolkit because it is not delivered to, nor required at, an operational site. The Developer’s Toolkit includes
object code libraries, header files which define the public APIs, and various tools. By convention, tools are
loaded underneath tiida/ TOOLS subdirectory shown in Figure 5-1. This serves as a convenient directory
for software contributed by the community for general development use.

5.2.4 Test Installation Subdirectories

The COE provides the ability for sites to temporarily install a segment on a platform to test it before putting
it on other platforms on the LAN. This is accomplished byGBETest | nst al | tool, while removal of

the test segment is accomplished by@ETest Renove tool (see Appendix C). These tools create
temporary directories for storing the test segment and, if the segment already’eK$esst | nst al |

moves the old segment to a safe location so that it can be rest@@é8Isst Renove once the test is
completed. Developers do not need to do anything special to their segment to enable this capability. It is
handled automatically by the tools.

5.2.5 Application-Server Subdirectories

To assist site administrators, the COE provides support for creating application $efuaesss done by

the toolsCOECr eat eAS, COEConnect AS, andCOERenoveAS (see Appendix C). ThECECr eat eAS

tool allows segments to be loaded onto a platform that is to be configured as an application server. The
application server may contain segments for mixed hardware types (e.g., Hewlett Packard [HP], Solaris,
DEC, International Business Machines [IBM]). Figure 5-4 shows the directory structure maintained on the
application server.

The toolCOERenpveAS removes segments from an application sever. Th&&@eConnect AS
connects a client platform to an application sever. It also allows “dynamic” loading of segments as
explained in Appendix C.

The COE doesot support installation of multiple versions on the application server, for the same platform
and operating system version. This could otherwise lead to problems if two different versions of a segment
for the same platform type were executed at the same time. Temporary testing of a new segment version
must be performed using tli&ETest | nst al | andCOETest Renove tools described in

subsection 5.2.4

Developers do not need to do anything special to their segments to enable the application-server capability.
It is handled automatically by the tools.

%" USER_PROFI LE is preserved for backwards compatibility only. The COE allows there to be multiple
active profiles so that an environment variable may not be the most appropriate way to determine the
current user profile. Developers must not directly access this environment variable because its use may be
phased out in a future release.

% Application servers are supported for UNIX platforony in this|&RTSrelease.

[20 COE I1&RTS: Rev 3.0 July 1997

Disk Directory L ayout

Platform4
Platform3
Platform?2

Platform1

COTS

AcctGrps

COE

data

Figure 5-4: Applications Server

DIl COE I&RTS: Rev 3.0

July 1997

121

Segment Prefixes and Reserved Symbols

5.3 Segment Prefixes and Reserved Symbols

Each segment is assigned a unique subdirectory underneath / h called the segment’s assigned directory

The assigned directory serves to uniquely identify each segment, but it istoo cumbersome for usein

naming public symbols. Therefore, each segment is also assigned a 1-6 character alphanumeric string

called the segment prefixThe segment prefix isused for naming environment variables and things such as

public APIs and public libraries where naming conflicts with other segments must be avoided. Al

segments shall prefix their environment variables with segpr ef i x_ where segprefixis the segment’s

assigned prefix. For example, the Security Administrator account group segment is assigned the segment
prefix SSQ All environment variables for this segment are therefore prefixed with the sB3@ ™.

The segment prefix is also used to uniquely name executables and shared libraries. All COE-component
segments shall use the segment prefix to name executables and it is strongly recommended that all
segments follow the same convention. For example, a proper executable for the Security Administrator
account group iS§SCSet Cl assi f. A properly named shared library would®80CSanpl eLi b. I i b.

This approach simplifies the task of determining the files that go with each segment and reduces the
probability of naming conflicts.

Note: Use the segment prefix inside application code in situations
where it is important to distinguish one segment from another.
For example, when audit information is written to the security
audit log, the segment prefix is also written to the audit log to
allow determination of which application module generated the
audited event. The same advice applies to all audit logs,
including those maintained by the operating system or aDBMS.

It is sometimes convenient for segments to share the same segment prefix. This is true for aggregate
segments or for segments produced by the same contractor. The COE allows segments to share the same
segment prefix; however, the burden for avoiding naming conflicts is placed on the segment developer.

Note: This means that segment prefixes are not guaranteed to be unique
and therefore cannot be used to uniquely identify a segment.
Each segment shall have a uniquely assigned directory and
segment name. Therefore, the name or directory in combination
can be used to uniquely identify a segment. There are situations
where it is more convenient to specify a segment’s assigned
directory rather than its name, such a€@kFi ndSeg, because
the directory name is typically shorter than the segment name
and this fact can be useful in speeding up character string
comparisons in segment searches. Furthermore, because the
segment directory will not have embedded blanks but the
segment name may, the segment name will not necessarily be the
same as the assigned directory name.

The segment prefixes shown in Table 5-1 are reserved.

[22 COE I&RTS: Rev 3.0 July 1997

Segment Prefixes and Reserved Symbols

Segment Pr efix Applicability

CBI F Character-Based I/F account group segment

CDE Common Desktop Environment segment

CCOE Common Operating Environment segment

DBA Database Administrator account group segment

DCE Distributed computing environment segment

D1 Defense Information Infrastructure segment

ECEDI Electronic Commerce/Electronic Data Interchange segment

ECPN Electronic Commerce Processing Node segment

EM Executive Manager segment

GCCS Global Command and Control System segment

GCSS Global Command Support System segment

| NFRMX Informix COTS segment

JCALS Joint Computer-Aided Acquisition and Logistics Support
segment

JMCI' S Joint Maritime Command Information System segment

JMIK Joint Mapping Toolkit segment

MOTI F Motif

Nl PS Navy NIPS segment

NT Generic NT segment

ORACLE Oracle COTS segment

GSS Navy OSS segment

SA System Administrator account group segment

SCO SCO-UNIX segment

SSO Security Adminigtrator account group segment

SYBASE Sybase COTS segment

TI M5 Navy TIMS segment

UB Navy Unified Build segment

UNI X UNIX operating system

USER prefix for operator-specific items

W N generic Windows segment

W N95 Windows 95 segment

W NNT Windows NT segment for 80x86 platforms

XW N X Windows

Table 5-1: Reserved Segment Prefixes

The COE sets five environment variabl es that must not be confused with the USER prefix or the segment
home environment variable.

« The HOVE environment variable is set by the operating system to be the login directory; that is, the
login directory as contained in the UNIX / et ¢/ passwd file. Thiswill normally pointtoaScri pt s
subdirectory while the segment “home” environment variaddgpr ef i x_HOVE) is one level up
from HOVE.

« TheUSER environment variable is set by the operating system to be the login account name and does
not refer to a directory as does tH8ER prefix. ThusUSER_HOVE will be / h/ USERS/ $USER.

DIl COE I&RTS: Rev 3.0 July 1997 123

Segment Prefixes and Reserved Symbols

e Theenvironment variables LOG_NAME, LOGNAME, and LOG N_NANME are equiva ent to the USER
environment variable®, but are not always present on every system.

The COE aso includes a number of predefined environment variables that arerequired by UNIX, NT,
X Windows, and other COTS software. These environment variables are either set automatically by the
operating system or they must be set by an account group segment. Other segments shall not alter these
environment variables except as permitted by environment extension files (e.g., extending the pat h
environment variable).

Table 5-2 lists various important environment variables that are set by the applicable account group, the
parent COE-component segment, or the COE ingallation tools.

The COE sets environment variables MACHI NE_CPU and MACHI NE_CS to define the hardware and
operating system being used. This allows scripts and descriptors to perform operations that are dependent
on the hardware or operating system. Table 5-3% lists the possible val ues set by the COE which either may
be used as constants in #i f def constructs within descriptor files or as possible values for the appropriate
environment variable (e.g., MACHI NE_CPU).

Note that the environment variables (e.g., MACHI NE_CPU) will have one and only one value, but several
constants may be defined for use within the descriptor files. For example, if the hardware platformisan
HP715 running HP-UX 9.01, the MACHI NE_ CPU environment variable will be set to HP715,

MACHI NE_GOS will be set to HPUX, while the constants HP, HP715, HPUX will be defined for usein
descriptors.

% USERs preserved for backwards compatibility with legacy pre-POSIX systems. LOGNAME is the proper
POSIX equivalent.

“0 This list of constants will be updated as new platforms are supported. Refer to the DIl COE Release
Notes and Version Description documents for details as new platforms are supported.

[24 COE I&RTS: Rev 3.0 July 1997

Segment Prefixes and Reserved Symbols

Environment Variable Usage
CCE_SYS_NAME string containing system name (e.g., “GCCS”)
T -
OCE_TMPSPACE location of temporary space
*
DATA_DI R / h/ dat a
DI SPLAY current display surface (UNIX only)
HOVE user’s login directory

+ .
I NSTALL_DI R absolute pathname to where segment was installed

*

LD LI BRARY_PATH

*

default location of shared X and Moitif libraries (UNIX

only)
user’s login account name

LOGNAME
* S .
LOG NAME user’s login account name
* S .
LOG N_NANE user’s login account name
* .
MACHI NE_CPU CPU type derived fromnanme -m
* . B
MACHI NE_CS Operating system derived froomane -s -r
pat h list of paths to search to find an executable
SHELL shell used (e.g., /bin/csh) (UNIX only)
SYSTEM ROOT absolute pathname to where Windows is installed

(applicable to PC-based COE only)
TERM terminal type (UNIX only)

*TI\/PDI R location of the system-defined temporary directory
*TZ time zone information (UNIX only)
USER user’s login account name
USER_DATA user’s data directory undéh/ USERS/ | ocal or
/ h/ USERS/ gl obal
USER_HOME user’s home directory undéh/ USERS/ | ocal or
/ h/ USERS/ gl obal
USER_PRCFI LE user’s current profile under

/ h/ USERS/ | ocal / Profil es or
/ h/ USERS/ gl obal / Profil es

/ h/ dat a/ app- def aul t s (UNIX only)

*
XAPPLRESDI R

* SENVI RONVENT /' dat a/ app- def aul t s/ COEBaseEnv (UNIX only)
*
XEONTSDI R / h/ data/fonts (UN|X onIy)
L egend: " Environment variables set by the parent COE-component segment.

+

Environment variables set by the COE installation tools. These are defined only at
installation time.

All remaining environment variables are set by the applicable account group
segment.

Table 5-2: COE-Rdated Environment Variables

DIl COE I&RTS: Rev 3.0 July 1997 125

Segment Prefixes and Reserved Symbols

MACHINE_CPU Environment Variable
Constant Platformsfor Which Defined
DEC DEC Alpha platforms
HP700 HP 700 series platforms
HP712 HP712 platforms
HP715 HP 715 platforms
HP750 HP 750 platforms
HP755 HP 755 platforms
IBM IBM RISC 6000 platforms and PowerPC
PC386 Intel 80386 platforms
PC486 Intel 80486 platforms
PENTIUM Intd Pentium platforms
SGlI Silicon Graphics platforms
SPARC Sun Sparc platforms
SUN4 Sun 4 platforms

MACHINE_OS Environment Variable
Constant Platformsfor Which Defined
AlX IBM RISC 6000 platforms and PowerPC
OSF1 DEC Alpha platforms
HPUX all HP-UX platforms
IRIX Silicon Graphics platforms
NT all NT platforms
SOL all Solarisplatforms
WIN95 all Windows 95 platforms
Miscellaneous Constants

Constant Platform for Which Defined
DEC all DEC platforms, regardless of OS
HP all HP platforms, regardless of OS
IBM all IBM platforms, regardless of OS
PC all 80x86 platforms, regardless of OS
SGI all SGI platforms, regardless of OS
SPARC all Sun Sparc platforms, regardless of OS

Table 5-3: Platform and Operating System Constants

26 COE I&RTS: Rev 3.0

July 1997

Segment Types and Attributes

5.4 Segment Types and Attributes

Segment types and attributes were briefly introduced at the beginning of this chapter. The present
subsection describes segment types and attributes in more detail. Segments are the cornerstone of the COE
approach, and proper determination of their type and associated attributes determines how the COE handles
them. Devel opers have considerabl e freedom in building segments; however, there are some important
considerations regarding them.

« Cregtion of an account group segment requires prior approval by the Chief Engineer. Most account
groups are predefined by the COE itsalf to establish DII-compliant runtime environments. System
designerswill typically add an operator account group that establishes the basic runtime environment
for ther system. Other devel opers will not normally create account group segments.

* Crestion of a COE-component segment requires prior approval by the DIl COE Chief Engineer.

e All COTS products shall be packaged as individual COT S segments, unless approved by the DIl COE
Chief Engineer. Thisrequirement is mandated to make it easier to handle COTS licenses, and to ensure
that asingle version of a COTS product isin use. Dependencies on COTS product versions must be
identified and coordinated with DISA to ensure that the proper version is supported by the COE.

* Segments shall not modify any file that lies outside the segment’s directory. Community files may be
modified only through public APIs or through requests made to the COE installation tools.

Segment types are identified by thEYPE keyword in theSegNane descriptor. Segment attributes are
also specified in th8 TYPE keyword by the presence of an optional attribute parameter. See
subsection 5.5.1.10 for details.

5.4.1 COTS Segment Types

The COTS segment type is used to describe the installation of COTS products. It is preferable to structure a
COTS product as a software segment, if at all possible, because it provides more control over the
installation and placement of the COTS product. However, this is sometimes not possible because where
COTS products will be loaded, what environment extensions are required, etc. are often very vendor-
specific.

The COE must retain segment information about all segments, including COTS products. The segment
descriptor information for all COTS segments is located underneath the dirdetd@@TS as shown in

Figure 5-5. COTS software is not necessarily actually stored in the diretitbGOTS. Frequently only

the segment descriptor information is stored there because the actual location of COTS products is often
spread across several subdirectories (su¢tugs, / usr/1i b/ X11, and/ et c).

Using UNIX as the example, Figure 5-5 shows the segment descriptor information for the operating system
(UNI' X), the X Windows environmenX{VW ndows), the Motif window manager and libraridébt i f),

and the Common Desktop Environment softw&lleH). These four subdirectories, along with the actual

COTS software, are loaded with the COE kernel. The example in Figure 5-5 also shows that the DCE
COTS product has been installed.

DIl COE I&RTS: Rev 3.0 July 1997 127

Segment Types and Attributes

COTS

UNIX XWindows M otif DCE CDE

SegDescrip| |SegDescrip| [SegDescrip| [SegDescrip| |SegDescrip

Figure5-5: COTS Directory Structure

COTS products sometimes have very specific requirements asto the location of files within the product.
The general approach to such segmentsisto create atemporary segment structure in which to store the
COTS product, copy the COTSfilesto their required location during installation, and then copy the
segment descriptor information to/ h/ COTS. It istheresponsibility of the Post | nst al | script to copy
the COT Sfilesto their appropriate directories and to perform any other required initialization steps. The
installation software handles moving the segment descriptor information to the standard location,

/ h/ COTS.

For example, assume a COT S product called Sanpl eCot s isto beinstalled which requires loading a
seriesof filesinto/ et ¢ (filesf 1,f 2, andf 3),/ usr/ | ocal (filesf4 andf5),and/ usr/1i b (files
f6,f7,f8 andf 9). A segment directory structure can be set up in whatever manner is most convenient.
Figure 5-6 shows one possible solution. Theinstallation software will 1oad the segment Sanpl eCot s
wherever there isroom on the disk and will set the environment variable | NSTALL DI Rto the absolute
pathname to where Sanpl eCot s wasloaded. The Post | nst al | script for this example must
recursvely copy the subdirectorieset ¢ and usr from | NSTALL_DI Rto/ et c and/ usr. The
installation software will copy the segment descriptor information to/ h/ COTS/ Sanpl eCot s and then
delete all filesunderneath | NSTALL_DI R

Asan alternative, the COE allows a segment to specify exactly whereit must be loaded. Thisis done with
the $HOVE_DI R directive described in subsection 5.5. Thisreduces the need to copy files from one
directory to another, and eiminates the temporary disk space required during installation (e.g., to
temporarily store the segment when it isread from tape, then copy it to its new location, then delete the
temporary location).

SampleCots
I I
etc usr SegDescrip
f1 | |
f2 .
f3 local lib
f4 f6
f5 f7
f8
f9

28 COE I&RTS: Rev 3.0 July 1997

Segment Types and Attributes

Figure 5-6: Example COTS Segment Structure

The segment descriptor Fi | esLi st (see subsection 5.5.2.13) isused to document where a COTS product
wasingaled. TheFi | esLi st descriptor for thisexampleis

$PATH: / et c
$FI LES
f1

f2

f3
$PATH: / usr
$FI LES
local/f4
local /f5
lib/f6
lib/f7
lib/f8
lib/f9

To summarize the COTS segment type:
e COTS products should be installed as a software segment type if possible.

« The COTS segmentRost | nst al | script is responsible for copying files to their required location.
ThePost | nst al | script must ensure that enough space exists.

« The installation software places the segment descriptor information underhé&@8TS/ SegDi r
whereSegDir is the segment directory name chosen for the temporary segment structure
(Sanpl eCot s in the example above).

« The COTS segmentRost | nst al | is responsible for deleting the temporary segment structure after
the installation is complete.

* COTS segments shall document what files are loaded and their locatiorrir #x€Li st segment
descriptor.

* When practical, COTS segments should make symbolic links to the appropriate location for their
software instead of copying the files and directories. This allows the installation software to make
more effective use of the disk space available and avoids the problem of running out of disk space for
such common directories Assr and/ et c.

Note: Developers should normally not include the vendor name in the
segment name because this makes the segment vendor-specific.
Other segments which then depend upon the COTS product are
affected because they then become vendor-specific as well. For
example, a segment name such as “DCE” is preferable to
“Vendor A DCE” because segments may specify a dependency
on a segment whose name is “DCE” rather than “Vendor A
DCE.” This is especially the case when the COTS product is the
implementation of an industry standard. However, it is
sometimes advisable to include the vendor name because the

DIl COE I&RTS: Rev 3.0 July 1997 129

Segment Types and Attributes

product truly is vendor-proprietary. This is typically the case
with an RDBMS.

5.4.2 Account Group Segment Types

An account group segment is atemplate for establishing a basi ¢ runtime environment context that other
segments may extend in a controlled fashion. An account group segment determines

* the processesto launch,
e theorder in which to launch processes, and
» therequired environment script files (. cshrc, . | ogi n, etc.).

Account groups may also contain executables and data in the subdirectories identified in Figure 5-2.

The COE provides several predefined account groups. They are located underneath / h/ Acct Gr ps shown
in Figure 5-1. Important predefined account groups include the following:

Charl F account group for character-based interfaces
DBAdmM account group for database administrators
SecAdm account group for security adminigtrators
SysAdm account group for system administrators

In addition to these account groups, COE-based system designerswill generally create their own account
group for normal operator accounts (GCCS for the Global Command and Control System, GCSS for the
Global Command Support System, ECPN for the Electronic Commerce Processing Node system, etc.).
They will include Char | F if the system supports a character-based interface and may include other
account groups to suit system mission requirements.

Figure 5-7 shows how the UNIX System Administrator account group is structured. It demonstrates what
account groups are for and how they are used in building a COE-based system.

bi n Subdirectory

Account groups utilize COE executables, located underneath / h/ COE/ bi n, but will usually include

additional account group specific programs. These are located in the account grbup’subdirectory. DIl
compliance requires that executables within this subdirectory use the segment prefix to avoid potential
naming conflicts with other executables.

[30 COE I&RTS: Rev 3.0 July 1997

Segment Types and Attributes

AcctGrps
I
SysAdm
Scripts bin SegDescrip data

.cshrc l l
redEy Menus Icons Help
.cshrc.SA
Jogin
RunSA

Figure 5-7: Example Account Group Directory Structure

dat a Subdirectory

Segment data specific to the System Administrator account group is located in the dat a subdirectory. The
Menus subdirectory contains menu files that have menu entries for all options available from the basic
System Administrator application. The segment installation software may modify files contained here to
add other menu options. Account group menu files are used as templates from which profiles are created by
including or excluding desired menu items and execution permissions. Thel cons subdirectory is
analogous, but definesiconsfor use by the desktop for launching applications.

Help files arelocated underneath the dat a/ Hel p subdirectory and identified through the Hel p segment
descriptor. Refer to subsection 5.5.2.15 for more details on this segment descriptor.

Scri pt s Subdirectory

A UNIX account group segment will usually contain at least the following two scripts to establish the
runtime environment:

.cshrc define environment variables
.login define terminal characteristics

Precise contents of these files is application-dependent. Other segments may be |oaded to extend the
environment established by the account group. Thisis done through environment extension files. DII-
compliant account group segments shall name environment extension filesin the form

script nane. segprefi x

where scriptname is the environment file to be extended and segprefix isthe segment prefix. For the
example shown in Figure 5-7, the environment extension files are:

.cshrc. SA extensionstothe. cshrc file
.l ogin. SA extensonstothe. | ogi n file

DIl COE I&RTS: Rev 3.0 July 1997 131

Segment Types and Attributes

Extension of the. | ogi n fileis seldom required.

Environment extension files permit COE ingtalation software to provide segment-specific environment
modifications. A segment uses the descriptor Reqr dScr i pt s (see subsection 5.5.2.22) to indicate which
environment file to extend and the ingallation tools modify the proper file within the account group
segment.

For example, suppose the ingallation tools have loaded a segment underneath / h/ SAOpt and the SAOpt
segment has an environment extension filenamed . cshr c. SAOpt in the segment’'Scri pt s

subdirectory. The installation tools will include the new environment settings by inserting the following
statements in the account group'’s fileshr c. SA:

if (-e /h/SAOpt/ Scripts/.cshrc. SAOpt) then
source /h/ SAOpt/ Scri pts/. cshrc. SAOpt
endi f

The installation tools automatically remove these statements ftair c. SA if the segmenSAOpt is
deleted.

Account group segment developers shall ensure that environment extension files are included and
accounted for in the appropriate account group segment’s scripts. For exampbss lihe file shown in
Figure 5-7 includes the following statements

if (-e $SA HOVE Scripts/.cshrc. SA) then
source $SA HOVE/ Scri pts/.cshrc. SA
endi f

to account for cshr c extensions. Also note that theur ce command shall be of the form
source $SA HOVE/ Scri pts/.cshrc. SA

rather than
source $USER HOVE/ Scri pts/.cshrc. SA

The COE-mandated form ensures a single copy of the environment extension file, updated and maintained
by the installation software.

The file. cshr c. dev shown in Figure 5-7 relates to the software development environment. It is not a
required file, but is described here as an example of how the development environment can be
accommodated, yet kept separate from the runtime environment. In the example shown, developer
preferences such as alias commands are includezkinr c. dev. These preferencesust not be included
as part of the runtime environment. A technique such as

i f ($?DEVELCPER) then
source $SA HOVE/ Scri pts/. cshrc. dev
endi f

within the. cshr c file is required to achieve separation of the development environment from the runtime
environment. This technique will not work for certain files, suchragnr ¢, because they do not support
conditional statements.

Account groups must include the base environment established by the COE. Subsection 5.4.8 describes the
COE-component segments in more detail. Taehr c file in Figure 5-7 includes the base COE
environment with the statements

[32 COE I&RTS: Rev 3.0 July 1997

Segment Types and Attributes

if (-e /h/COE/ Scripts/.cshrc. COE) then
source /h/ COE/ Scripts/.cshrc. COE
endi f

Theremaining filesin Figure 5-7 contain smilar statements to include other COE environmental settings.

Account groups must also provide a script or program which launches the application. Thisisthefile
named RunSA shown in Figure 5-7. DIl compliance requiresthisfile to be located underneath the
Scri pt s subdirectory.**

To summarize compliance requirements for account groups:

e Account group segments shall provide environment extenson files of the form
scri pt pnane. segpr ef i x, where scriptname isthe name of the script which sets the
environment, and segprefix isthe account group’s segment prefix. This must be done for any files that
other segments may extend (e.g:shr c. SA for theSys Admaccount group).

* Account group executables shall use the segment prefix to avoid naming conflicts.

« Account group segments shall not include the developer environment as part of the runtime
environment.

* Account group segments shall provide a single program or script with theRuaraegpr ef i x,
wheresegprefix is the segment prefix, to initiate execution of the account group’s application. This
executable shall be located in the account group segnSanmtispt s subdirectory.

* Account group segments shall automatically include environment settings established in
/ h/ CCE/ Scri pts.

* Segment developers shall not modify account group files except through use of the installation
software.

» Segment developers shall not override environmental settings established by the account group.
Segments may use environment extension files to expand the environmental settings.

5.4.3 Software Segment Types

Software segments add functionality to one or more account groups. The account group(s) to which the
software segment applies is called #ffected account group(s). The directory structure for a software
segment was presented in Figure 5-2.

Software segments frequently need to extend the runtime environment, add new menus and icons to the
desktop, and include new executables in the search path. Environment extension files are located
underneath the software segmetss i pt s subdirectory. Th&®eqr dScr i pt s segment descriptor
indicates which environment files are to be extended.

Software segments provide additional menu and icon files underneath the sedateat'#enus and
dat a/ | cons subdirectories respectively. The segment descripfemsis andl cons are used to
describe where the new items are to appear on the desktop. At installation time, the menu and icon files

“! This program is required for backwards compatibility and as an aid to integrators and testers. It may be
phased out in a future release because the program is not necessarily used in the operational system,
depending upon the characteristics of the system desktop.

DIl COE I&RTS: Rev 3.0 July 1997 133

Segment Types and Attributes

from &l contributing segments are added to the affected account group. Thisthen serves as amaster
template of all possible functions provided within the account group. Profiles are then created by
selectively including or excluding functions within this master template.

UNIX segments that provide executables must ensure that the bi n subdirectory isincluded in the search
path. Thisisaccomplished by including a statement of the following formina. cshr c extension file:

set path =($path $segprefix_HOVE/ bi n)

The segment shall append its bi n subdirectory, and only its bi n subdirectory, at the end of the search
path, not the beginning. An implied aspect of thisrequirement is that segments cannot depend upon a
specific loading sequence, other than that a segment will not be loaded until after all ssgmentsit depends
upon are loaded. A specific requirement isthat segments shall not insert the current working directory (i.e,

") into the search path.
DIl compliance requires the following:

* Segments shall not make separate copies of executables from other segments, the operating system, or
other COTS products.

* Segments shall use environment extension files as necessary to extend the environment established by
the affected account group.

e Segments shall use the segment prefix to name objects whenever conflicts may arise with other
segments.

* Segments shall be completely self-contained. Dependencies on, or conflicts with, other segments shall
be specified through the approprig&equi r es or Conf | i ct s segment descriptors.

* Segments shall not insert the current working directory into the search path for executables.

* (UNIX) Segments shall include thdir n subdirectory at the end of the search path, not at the
beginning nor in the middle.

5.4.4 Data Segment Types

Data files are most often created explicitly at runtime by a segment or loaded as part of the segment itself.
However, the ability to load data as a separate segment is useful when there is classified data, optional data,
large amounts of data, or data that may not be releasable to all communities. The COE supports five
categories of data grouped according to data scope, how the data is accessed, and where the data is located:

Global Data in this category means that every platform, every application, and every
operator on the LAN accesses and uses exactly the same data. Global data is made
available through Network File Server (NFS) mount points or some similar
technigue. Examples of global data include the track database and message logs.
Global data is located in subdirectories undernghtidat a/ gl obal .

Database This category is similar to global data but is used to provide data fill for a database
segment. Examples of this kind of data include intelligence datal&¥eES data,
and TPFDD data. Data is loaded into the appropriate objects previously created by
a database segment in a database server. Database segments are discussed further
in subsection 5.4.5. Data segments for databases are usually removed after
successfully loading data into the database server.

[34 COE I&RTS: Rev 3.0 July 1997

Segment Types and Attributes

L ocal Local dataislimited in scopeto an individua platform. All platform users and
applications access the same data, but the data may (and frequently will) differ
from one platform to another. Examples include overlays and briefing dides,
although the COE provides techniques for exporting these to other platforms.
Local dataislocated in subdirectories underneath / h/ dat a/ | ocal .

Segment Segment dataislocal to aplatform, but is managed and accessed by a single
software segment. This data is located under the segndertitss subdirectory
(e.g.,SegDi r/ dat a whereSegDir is the assigned directory) and is typically
static data used for segment initialization.

Operator Data in this category is specific to an operator and is the most limited in scope.
Typical examples include preferences for map colors, location of various
windows, and font size. Operator data is storeddatea subdirectory underneath
/ h/ USERS created for the operator when the operator login account is created, as
described in subsection 5.2.2.

There are some important considerations with respect to these data categories:

« Data is not necessarily available to an operator or process even if the data scope would otherwise
permit it. Discretionary access controls limit access based upon the sedioityopthe system.

* In some cases, data that could be global is replicated on every platform to improve system
performance. For example, World Vector Shoreline data is identical for everyone on the LAN, and
hence meets the criteria for the global data category. However, for efficiency, this data may be
replicated on each platform which requires maps and is thus considered local.

« Distinction is made between segment data and local data because it affects where the data is stored on
the disk. Local data for all segments is stored in a single place to make it easier for doing data backups.
Because segment data is normally static, it does not usually need to be archived and remains with the
segment.

Segment data created at runtime or loaded as part of the segment does not require any special consideration
by the COE. The remainder of this subsection will deal with the COE requirements for local and global
data, and then present an example of how a data segment is structured for local, global, and segment scope.

gl obal and| ocal Subdirectories

Figure 5-8 shows the directory structure for global and local data. The COE runtime environment sets the
environment variabl®ATA_DI Rto point to/ h/ dat a. Segments shall use this environment variable to
reference global or local data. The segment which owns the local or global data is responsible for creating
and managing its data subdirectories underrfB28TA DI R/ | ocal and$DATA DI R/ gl obal .

Assuming the segment’s assigned directoi§egDir, the segment shall create a subdirectory of the form
SegDi r/ dat a under$DATA DI R/ | ocal and/or$DATA DI R/ gl obal as appropriate.

For example, suppose a segment that does Anti-Submarine Warfare (ASW) planning is located underneath
/ h/ ASWand it will create both global and local data. Then the ASW segment must create the subdirectory
$DATA DI R/ | ocal / ASW dat a for local data and the subdirectory

$DATA DI R/ gl obal / ASW dat a for global data.

The COE mandates that local and global data be structured in this fashion for the following reasons:

* Centralizing data makes it easier to archive and restore. A simple data archive/restore utility can be
created without needing to know how many segments are loaded in the system.

DIl COE I&RTS: Rev 3.0 July 1997 135

Segment Types and Attributes

e Separating data from software makes it simpleto load the software without destructively overwriting
existing data. Thisis especially important as segments are upgraded.

data
I I I
local global fonts app-defaults
I I [| "Registry
COE UB JCALS | .. |GSORTS| | JCALS
data| | data data data data

“NT only

Figure 5-8: Data Directory Structure

e Cadllecting al global data under a single directory reduces the number of NFS-type mount points and
improves overall network performance.

* Organizing datainto a standard structure simplifies training and simplifies determination of what data
isloaded in the system.

f ont s and app- def aul t s Subdirectories (UNIX)

Figure 5-8 shows two additional subdirectories, f ont s and app- def aul t s. These are applicableto
UNIX only. The COE sets environment variables XFONTSDI R and XAPPLRESDI Rto point to these
subdirectories. Their purposeisto contain additional fonts (such as Naval Tactical Data System [NTDS]
symbol ogy) or application resource files that are not provided by the standard X/Motif distribution. Itisa
violation of the COE for a segment to overwrite or add files to the standard X/Moatif distribution.

During installation, the installation tools look for subdirectoriesdat a/ f ont s and dat a/ app-

def aul t s underneath the segment’s directory. Files contained within these subdirectories must use the
segment prefix to guarantee uniqgue names. The installation tools create symbolic links underneath the
directory$DATA DI R/ f ont s to every file in the segmenttkat a/ f ont s subdirectory and removes the
links when the segment is deinstalled. Similarly, links are created for files underneath the segment’s

dat a/ app- def aul t s subdirectory.

Creating a data segment requires additional considerations. A segment structure is created for the data and
the installation tool$ogically insert the data undernes8BATA DI R for global and local scope, but
underneath the parent segment for segment data. This is best described through use of an example.

Assume a mine countermeasures decision aid has an assigned dirdetorg BDA. Assume that a
separate data segment is to contain parametric data on floating, proximity, and land mines for the decision
aid. Figure 5-9 shows the appropriate directory structure for the data segment. Further assume that when

[36 COE I&RTS: Rev 3.0 July 1997

Segment Types and Attributes

installed, the decision aid is located underneath / h/ M neTDA. Consder how the installation tools handle
the mine data segment for global, local, and segment scope.

MinesData

data SegDescrip

Floating Proximity Land

Figure 5-9: Example Data Segment Structure

Global Scope Example

The Dat a segment descriptor describes the data scope. For aglobal data segment, the install ation tool s will
load the mine data underneath the directory $DATA DI R/ gl obal / M nesDat a. If thereisinsufficient
space to load the segment underneath $DATA DI R/ gl obal , theinstdl tools will report an error and
abort. Themine TDA can thusreference global proximity-mine data as being underneath the directory
$DATA DI R/ gl obal / M nesDat a/ dat a/ Proxi m ty.

L ocal Scope Example

For alocal data segment, the installation tools will load the mine data on the first available disk partition.
The ingallation tools will then creste a symboalic link from $DATA DI R/ | ocal / M nesDat a/ dat a to
wherever the data segment was actually loaded. That is, if the data segment is |oaded underneath

/ home2/ M neDat a, then the symbolic link will point to the directory / home2/ M neDat a/ dat a. The
mine TDA can still reference local proximity mine data as being underneath the directory

$DATA DI R/l ocal / M nesDat a/ dat a/ Proxi mi ty.

Segment Scope Example

For segment scope data, the install ation tools will 1oad the mine data on thefirst available disk partition. A
symbolic link isthen created from the directory / h/ M neTDA/ dat a/ M nesDat a/ dat a to wherever
the data segment was actually loaded. Proximity data can thus be referenced as being underneath the
directory $HOVE_DI R/ dat a/ M nesDat a/ data/ Proxim ty.

It should now be clear why the COE requires that segments which dynamically create global or local data

do so underneath a directory of theform SegDi r/ dat a, where SegDir is the name of the segment’s

assigned directory. This creates a uniform technique for locating files whether they are created directly by a
segment or loaded as part of a data segment.

In summary, DIl compliance mandates that:
e Segments shall create a data subdirectory underfBARA DI R for global and local data if they

own global or local data. The subdirectory created shaBege r/ dat a whereSegDir is the name
of the segment’s assigned directory.

DIl COE I&RTS: Rev 3.0 July 1997 137

Segment Types and Attributes

e The parent COE-component segment shall set the environment variable DATA DI Rto point to
/ h/ dat a.

* Segments shall use the environment variable DATA_DI Rto reference data underneeth / h/ dat a.
e Segments are responsible for creating the segment’s data subdirectories untiarrisitta.
e Segments are responsible for handling the case in which a data file is not present or is corrupted.

¢ (UNIX) The parent COE-component segment will set environment varigbl@sTSDI R and
XAPPLRESDI R to point to$DATA DI R/ f ont s and$DATA DI R/ app- def aul t s respectively.

¢ (UNIX) Segments shall place fonts that need to be accessibd&@ETSDI R in the segment’s
SegDi r/ dat a/ f ont s subdirectory. Files in this subdirectory shall be named using the segment
prefix.

¢ (UNIX) Segments shall place application resource files that need twéssible viXAPPLRESDI R

in the segment’dat a/ app- def aul t s subdirectory. Files in this subdirectory shall be named using
the segment prefix.

5.4.5 Database Segment Types

The database segment type is similar in concept to the data segment type, except that the data within a
database segment type is managed by a DBMS. Data within a data segment type is typically organized as a
“flat file” and is typically managed by the operating system’s file system.

As explained in Chapter 2, a database segment has scope, which is an indication of how widely the data is
shared, not of where the data is located, as is the case with the data segment type already described. This
scope is indicated in the Database segment descriptor discussed in subsection 5.5.2.9. Data within a
database segment type may be:

Unique This type of database segment indicates that the data is used by only one
application, or is under the configuration control of the segment sponsor. Unique
data represents no sharing between segments.

Shared This type of database segment indicates that the associated data is used by multiple
mission-application segments or is managed across multiple database segments.
Data is shared, but typically only within one mission domain (e.g., logistics,
financial, command and control).

Universal Data in this category represents the most extreme form of “shareability.” These
database segments represent widespread usage across mission domains,
application segments, and require centralized configuration management.

A database segment contains everything that is to be installed on the database server under the management
of the DBMS and the ownership of the DBA. It contains the scripts to create a component database and any
utilities provided by the developers for the DBA’s use in installing and filling that particular database.

These scripts must include those for granting and revoking database roles. The only applications permitted

in a database segment are those that support its installation and data fill or that extend DBMS services for

the DBA. Database segments may only be installed on a database server.

When a database segment is installed it must first lay down any scripts, data files, etc. that will be used to
create the database. These scripts are then execuPed blynst al | to create the component database.
They must first allocate storage to hold the database and create one or more database accounts to own that

[38 COE I&RTS: Rev 3.0 July 1997

Segment Types and Attributes

database. They then can create the database within the storage just allocated and fill it with data. Finally,
roles are created to manage access and the roles are given the appropriate privileges.

Devel opers cannot provide data files for the DBMS as part of the segment. Database files must be created
using the DBMS vendor’s utilities (e.g. Oracle’s SQL*DBREATE TABLESPACE command) to be
correctly incorporated in the DBMS instance.

Figure 5-10 is the same as Figure 5-2 except that it has been shaded to highlight the directories which are
used only for database segments and directories which are not required at runtime have beenSsgmoved.
is the segment’s assigned directory. It is unique and, for a database segment, it must be the same as the
name of the database owner account for the segment’s data objects.

SegDescrip | | Scripts | | data bin install DBS files

Figure 5-10: Database Segment Structure

Scri pt s Subdirectory

TheScr i pt s subdirectory shall contain any segment-specific scripts needed to set the environment for
the database installation. This includes environment variables for all directory paths that are used by the
installation scripts. Note that this directory is used as a place to store installation-related environmental
scripts. As with the development environment, scripts and environmental settings which are used only for
installation must be kept separate from those used by the runtime environment.

SegDescri p Subdirectory

TheSegDescr i p subdirectory contains the descriptor files necessary to install the database segment.
Certain information specific to database segments must be incorporate@éyth® o file. The

Dat abase descriptor is used to identify information such as object dependencies that are within the
database and therefore cannot be evaluated without the use of the DBMS. See subsection 5.5.2.9 for the
associated keywords for this segment descriptor.

ThePr el nst al | descriptor file should prompt the installer to provide the password for the DBMS’
database administrator account. The password prompt must be implemented@aRhenpt Passwd

API (see Appendix C) provided by the COE Services. The DBA password entered is used later by the
scripts that perform the installation of the database segment.

ThePost | nst al | descriptor file is used to set up the installation environment, start the RDBMS if
necessary, and invoke the scripts that perform the installation of the database segment.

For database segments, Red easeNot es descriptor should show how applications, operating system
groups, and database roles are associated. Developers should also provide the database schema, including

DIl COE I&RTS: Rev 3.0 July 1997 139

Segment Types and Attributes

its dependencies. In addition to any narrative information in thisfile, devel opers should include comments
on their schema, data objects, and data e ements as part of their database build.

The Requi r es descriptor must identify the required RDBM S and version. It must also identify all
dependencies on other database segments.

Aswith data segments, database segments have a scope associated with them. The scope is specified in the
Dat abase segment descriptor, as explained in subsection 5.5.2.9.

i nstall Subdirectory

Thei nst al | subdirectory containsthe scriptsto install and then create the database segment. It includes
al of the DDL scriptsthat create the database objects for the segment. There are two sets of DDL scriptsin
thisdirectory. Thefirst set all ocates storage for the database, creates the database owner, and defines the
roles associated with the database segment. It must be executed by a DBA. The second set creates all
database objects (tables, views, indexes, sequences, constraints, triggers, etc.) that make up the database.
This set must be executed by the database owner.

The naming conventionsto be used for database definition scripts and the structure of those scripts are
discussed in Chapter 4.

dat a Subdirectory

The dat a subdirectory contains any data files used to |oad the database. Data fill may also be provided in
a separate data segment if devel opers wish or need to keep the fill separate.

Several methods for |oading data, depending on data size, are discussed in subsection 5.9.3.

bi n Subdirectory

The bi n subdirectory contains any scripts or other executables used to load data from the data files into the
database. It may also contain any applications that support unique database administration requirements for
that database segment.

DBS fi |l es Subdirectory

The DBS_fi | es subdirectory contains the DBM S-controlled data files that make up the storage for the
database. This directory is owned by the DBMS, not the segment. The datafiles are crested during the
installation of the segment, normally in the Post | nst al | process. Directory ownership must be
transferred to the DBM S before the data files are created. Note that this does not alow developersto
stipulate disk architecture.

5.4.6 Patch Segment Types

The COE supportsthe ability to install field patches on an installed software base. A patch segment permits
the replacement of one or more individua files, including those of the operating system. It does not refer to
overwriting a portion of afile, asissometimes done to patch a section of binary code.

Patches are created in a segment whose directory nameis the directory name of the affected segment

followed by a “.”, followed by the letter “P”, followed by the patch number. Figure 5-11 shows an example
patch segment directory structure for applying patch 5 to an ASW segment. The subdirectory

SegDescr i p is required, but the remaining subdirectories are patch-dependent. The example illustrates a
situation in which scripts, executables, and data files are to be updated by installation of a single patch
segment.

M0 COE 1&RTS: Rev 3.0 July 1997

Segment Types and Attributes

Scripts bin SegDescrip data

Figure5-11: Example Patch Directory Structure

The ingtallation software |oads patches underneath the affected segment in a subdirectory called Pat ches.
Figure 5-12 shows the result of loading patch 5 from Figure 5-11. This approach makes it easy to find and
identify what patches have been applied to a segment. It also makes it easy for theinstallation software to
automatically remove patches when a segment isreplaced by alater update. If there isinsufficient room to
physically load the patch underneath the Pat ches subdirectory, the patch isloaded on thefirst available
disk partition. A symbolic link is then created to preserve the logical structure shown. Also note that when
installed, theresulting subdirectory name of the patch for this example isP5, not ASW P5.

As patches areinstalled and removed, the descriptor filel nst al | ed in the sesgment descriptor directory
for the affected segment is updated to reflect what patches are ingtalled and removed, the date and time, the
installer's name, and the platform from which the work was done.

When a patch is installed, it is the patch segment’s responsibility to perform whatever operations are
necessary to replace files. In the example showrRdbe | nst al | script must copy files from
Scri pt s, bi n, anddat a as required to update files in the existing ASW segment.

To facilitate patch removal, tHeost | nst al | program may create compressed copies of files before

they are modified and put them underneath the patch subdirectory (eAS\WWheat ches/ P5

subdirectory in this example). In this wayDBl NSTALL descriptor simply needs to copy the files from

the patch subdirectory to their original place and decompress them to restore the system to the pre-patch
state. If the files being replaced are large, this may require too much disk space to store the original files. In
such cases, the patch segment should be designated as a permanent patch and not make copies. A patch
segment is considered to be permanent if the patch segment does not iDEUSSBAL L descriptor.

DIl COE I&RTS: Rev 3.0 July 1997 141

Segment Types and Attributes

ASW

Scripts Patches| |SegDescrip

P5

Scripts bin SegDescrip data

Figure 5-12: Example Installed Patch

The COE installation software assumes that higher numbered patches must be removed before alower
numbered patch can be removed. For example, patch 2 cannot be removed until patch 5isremoved.
However, if patch 5 cannot be removed - because thereisno DEI NSTALL descriptor for patch 5 -
patches 1 and 2 cannot be removed either. The only way to remove them isto remove the entire segment.

DIl compliance requires that:

* Patch segments shall be named SegDi r. Pnunmber where SegDir is the assigned directory name for
the segment to be patched, and number is a sequential patch number.

e Patch segments shall perform the necessary operations to replace files through the Post | nst al |
script.

e Permanent patch segments shall be designated by the absence of a DEI NSTALL script.

Patch segments can also be used to make updates to a database segment prior to the release of a new
database segment that incorporates the patch. The patch segment structure will be the same as the database
segment being patched, and the patch name foll ows the same conventions as for any other patch segment.

Any objects, scripts, etc. that are being updated will be in the same location under the patch segment
directory as the corresponding original isunder the database segment directory. Post | nst al | will be
used to backup the origina and copy the new file to the database segment directory. The patch segment will
have the same owner as the database segment being patched.

Any changes to executables provided with the patch will be implemented in the same manner as patchesto
other software segments. Any changes to the database provided with the segment will require an analysis to
determine application segment dependencies. Changes to the database must be coordinated with application
segment devel opers.

If the patch segment is making any changes to the database objects, its devel opers are responsible for
preserving the information those objects currently contain, together with restoring any permissions that
have been granted on the objects. This usually requires extracting and saving the records from the objects
being modified, making the schema changes, and then reloading their data. That portion of the patch
segment must be implemented in amanner that alowsit to be restarted or re-executed without datalossin
the event of system or media failure during the patch installation.

M2 COE 1&RTS: Rev 3.0 July 1997

Segment Types and Attributes

5.4.7 Aggregate, Parent, and Child Attributes

It is sometimes convenient for a collection of segments to be treated as an indivisible unit. The aggregate
attribute provides this capability and the collection of segments are called an aggregate segment. One, and
only one, segment is designated as the parent segment and the remaining segments are designated as
children. Parent and child segments are designated as members of an aggregate in the SegNamne descriptor
file. The child segment must list its parent segment in SegNane (but not in Requi r es), while the parent
segment must list each child (in SegName but not Requi r es) in the aggregate. See subsection 5.5 for
the segment descriptor information required to do this. Each segment within the aggregate is packaged
according to its segment type as described in preceding subsections.

The parent segment plays a special role in the aggregate. During installation with the segment installer,

only the parent segment is “seen” by the operator. Child components are not displayed as selectable items,
but are automatically loaded with the parent. Therefore, the segment name and release notes associated
with the parent segment should be carefully chosen to be properly descriptive of the aggregate.

The parent segment is the first segment loaded from the aggregate. Child segments are loaded next in the
order listed by the parent segment. Because of this, child segments may specify a dependency on the
parent, but shall not specify dependencies upon one another.

In some situations, a child segment in an aggregate should be loaded conditionally. That is, the child should
only be loaded if it is not already on disk, or only if it is a later version. An example of this situation is if a
collection of segments created by a single developer must use the same executable. One approach would be
to create the common executable and put it into its own separate segment. Then all the remaining segments
would need to state a dependency upon it. An alternative approach, supported here, is to package the
common executable as a child segment that is to be conditionally loaded and placed in an aggregate with
each segment that needs it. The conditional load capability is specified$ly@ABCOND keyword in the

child segment'SegNarme descriptor (see subsection 5.5.1.10).

The COE requires that each segment incluBecur i t y segment descriptor. This file is used primarily

as a documentation aid and is used by the installer tool to indicate which segments are classified at what
level. The security level of the parent segment must dominate that of the child segments. For example, if a
child segment has a SECRET classification, then the parent segment must have a SECRET or higher
classification. The segment developer must ensure that each segment in the aggregate is compatible for the
hardware platformVer i f ySeg will check for this condition and reject an aggregate with incompatible
hardware platforms specified.

Disk space required is specified by each individual segment, not by the aggregate parent. The COE
installation tools may load parent and child segments on different disk partitions, depending upon space
available at install time. During installation, the space reported to the installer takes into account whether or
not the aggregate includes a conditional load child, and whether or not the segment is already on disk. That
is, the installer tool reports tlaglditional space required on the disk to load the selected segment(s).

DIl compliance requires:

« One and only segment in the aggregate shall be designated as the parent segment.

« Child segments may specify a dependency on the parent, but shall not specify dependencies upon one
another.

« The security level of the parent segment shall dominate the security level of all child segments.
e Segments within an aggregate shall be consistent with regard to the hardware platform specified.

« Segments shall individually specify their own disk space requirements.

DIl COE I&RTS: Rev 3.0 July 1997 143

Segment Types and Attributes

5.4.8 COE-Component Attribute

Segments authorized by the DIl COE Chief Engineer may specify the attribute of being a COE-component
segment. COE-component segments are similar to aggregate segmentsin that one segment servestherole
of a parent segment and al othersare children to that parent. The parent segment is Smilar to an account
group segment which is affected by a collection of child component segments. However, thereare
important differences between COE-component segments and aggregate segments, and between the parent
COE-component segment and account groups.

« Atingadlation time, asegment identified as a COE component must have an authorization key*? (see
the $KEY keyword) specified or el se the segment will be rejected.

* Exactly one segment is designated as the parent COE component for the entire system. Thisisthe
segment whose directory is/ h/ CCE.

e Child COE-component segments are not loaded unless they arerequired. That is, a child COE-
component segment will not be loaded unless there is another segment which expresses a dependency
upon it.

» COE-component segments are organized into a very specific structure.

* The parent COE-component segment does not set up a runtime environment. It sets up a baseline
environment which isinherited by all account groups.

Figure 5-13 shows the directory structure for COE-component segments. Since COE components form the
foundation for the entire system, they are collected together in asingle place and are validated more
rigorously during segment devel opment, integration, and ingtallation. Special processing, as explained

bel ow, is performed on the COE components because of their unique position within the architecture.

The SegDescr i p subdirectory, required for all segments, underneath / h/ COE refersto the collection of
COE components as awhole. Segments designated as child COE components are loaded in the
subdirectory / h/ COE/ Conp. Each child COE-component segment hasits own SegDescr i p, bi n,
Scri pt s, and dat a subdirectory as appropriate. If insufficient space existsto load the COE component
directly under / h/ COE/ Conp, asymboalic link is created to where the segment was actually loaded.

Environment files underneath / h/ COE/ Scr i pt s areincluded by every account group so that they are
automatically inherited by every segment. Thefile. cshr c. COE setsthe path environment variable so

that / h/ COE/ bi nisfirst in the search path before any other segments. Environment extensions for child
COE components are handled differently than environment extensons for other segments. As child COE-
component segments are ingalled, environment extension files located underneath the child COE
component’sScr i pt s subdirectory are textually inserted directly into the appropriate file underneath
/ h/ COE/ Scri pts. This insertion is performed automatically by the installation tools. This is done to
avoid the runtime overhead of executing seveoalr ce statements to pick up child segment extensions.

Child COE-component segments shall not alteiptiieh environment variable. It is not necessary to do so
because as child COE components are loaded, the installation tools create a symbolic link underneath
/ h/ CCOE/ bi n to where the executables were actually loaded. This is done so that the search path contains

“2 To preserve backwards compatibility, segments which are already authorized as COE-component
segments are not required to use3KE&Y keyword for thisl& RTS release. However, they are required to
migrate to this approach. In the interim, a legacy segment identified as a COE-component segment which
does not use th8KEY keyword is compared against a table containing the names of authorized COE-
component segments. If it does not match, the segment is rejected. All new COE-component segments
must use th&KEY keyword.

M4 COE 1&RTS: Rev 3.0 July 1997

Segment Types and Attributes

only one entry for the COE, regardless of the number of actual segments comprising the installed COE.
This approach mandates that all COE-component segments use the segment prefix to name executabl es.
Ver i f ySeg will issue awarning for COE-component segments that do not meet this requirement, but in a
futurereleaseit will strictly fail such a component.

COE
I I I |
Scripts bin data] |[SegDescrip Comp
,_I_‘ |
EM UB | .. EM UB CDE DCE
.chsrc.COE
Jogin.COE

Figure 5-13: COE-Component Segments Directory Structure

Symbolic links are also created underneath / h/ COE/ dat a to point to the child COE componentat a
subdirectory. The installation tools automatically delete these symbolic links when a COE-component
segment is deinstalled.

To summarize DIl compliance requirements:

e COE components shall be authorized by the DIl COE Chief Engineer. They will be issued an
authorization key that the developer shall specify in the segment wistiKEekeyword.

e Child COE components shall not alter fiet h environment variable.
* COE components shall use the segment prefix to name all executables.

* Child COE components shall use the segment prefix to name all public symbols contained in files
within the segment’'Scri pt s subdirectory.

5.4.9 DCE Attribute

The DIl COE supports both DCE server and DCE client applications. Servers are designated with the
DCESer ver Def segment descriptor (see subsection 5.5.2.11) while clients are designated with the
DCEC i ent Def segment descriptor (see subsection 5.5.2.10). Segments, whether a DCE server or a
DCE client, must indicate the DCE attribute or elseMibei f ySeg tool will generate a fatal error when
processing DCE-related segment descriptors.

DIl COE I&RTS: Rev 3.0 July 1997 145

Segment Types and Attributes

5.4.10 Web Attribute

Segment types that have the Web attribute are either Web servers or Web-application segments (e.g., Web
clients). By definition, Web servers are a so COE-component segments, so they have that implied attribute
aswell. Web applications may or may not be COE components, and so must indicate explicitly whether or
not they are. Thisisdescribed in subsection 5.5.1.10.

Web applications can only be ingtalled on a platform that already has a Web server loaded on it. Therefore
Web applications must be designed so that they can access other COE services that may be located on
another platform, possibly even behind a firewall. Thisallows sites to isol ate the main COE-based system
from the Web server by firewalls or other security-related techniques.

Other than specifying the Web attribute, no additional segment descriptors are presently required beyond
those identified for &l other segments.

5.4.11 Generic Attribute

The Generic attribute is provided to allow a segment to indicate that it should be automatically made a

member of all “regular” account groups. This means that the segment, unless it indicates otherwise, will be
made a participant of all account groups except those which are character-interface-baShd(¢.g),

or accessed through remote execution account groups sRelaise X.

This capability is provided for two reasons. First, some segments should be made a member of virtually
every account group. An example is a Web browser which is set up to provide access to HTML help pages.
Such a segment should be a member of the following:

« the System Admin account group

* the Security Admin account group

« the Database Admin account group

« the operator account group (e.g., GCCS, ECPN).

It is convenient that this happen automatically without the need for the segment to explicitly list every
account group it is to be a member of. Such segments do not need to express any affected account group in
the SegNane descriptor.

Second, some segments developed for one system may be generally applicable to other mission systems,
yet this may not have been realized when the segment was created. Using the Web browser example, if it is
packaged for GCCS and it sta&3CS is the affected account group, the segme®ggNamne descriptor

will need to be modified to use it for a different system such as ECPN or GCSS. Declaring the segment to
have the generic attribute avoids this problem.

There are some special points to note about segments which declare the generic attribute:
« The segment is automatically addeaxery account group exceghar | F andRenot eX.

e Site administrators can establish user profiles to deny an operator access to the generic segment, even
if it is a member of an account group.

« The generic segment is only stored on the disk once, regardless of how many account groups it is made
a member of.

» Generic segments may exclude account groups by listing the groups to exclude $EXGh&DE
keyword in theSegNane descriptor.

M6 COE 1&RTS: Rev 3.0 July 1997

Segment Types and Attributes

* The generic attribute may be combined with other segment attributes. Subsection 5.5.1.10 states which
attributes may be combined.

5.4.12 Segment Dependencies

Segments specify dependencies upon one another through the Requi r es descriptor, and, for database
segments with database dependencies, the Dat abase descriptor. However, the COE does not allow
circular dependencies. That is, a Situation where Seg A depends upon Seg B, Seg B depends upon Seg C,
and Seg C depends upon Seg A is grictly forbidden.

Components of an aggregate may have dependencies upon other components within the same aggregate
and such dependencies could lead to the circular Stuation just described. But since components of an
aggregate are always loaded together as a unit, this does not pose a problem. Child components of an
aggregate must not specify dependencies upon one another in the Requi r es file, even if they do indeed
have such dependencies. Likewise, the parent segment must not specify a dependency on children within
the aggregate. An aggregate of database segments cannot have circular database dependencies among the
segments or there will be no valid database creation order.

DIl COE I&RTS: Rev 3.0 July 1997 147

Segment Descriptors and Descriptor Files

5.5 Segment Descriptorsand Descriptor Files

This section detail s the contents of the segment descriptor files. These files are the key to providing
seamless and coordinated systems integration across all segments. Adherence to the format described here
isrequired for al segmentsto ensure DIl compliance. This enables automatic verification and installation
of segments.

The software tool Ver i f ySeg must be run during the devel opment phase to ensure that segments properly
use segment descriptor files. The softwaretool Makel nst al | uses information in segment descriptor
files to compress and package segmentsin aformat suitable for installation from tape, from a disk-based
LAN segment server, from aremote site, or from other media. At ingtallation time, the installation tools use
segment descriptor information to make the COE changesrequired (e.g., update menu files) so that
software components are availabl e to the user.

Some segment information is contained within individual files while other segment information is collected
into asinglefile, Segl nf 0. Segment descriptors which are contained in their own separate file are
discussed in subsection 5.5.1 while segment descriptors that are contained within the Segl nf o fileare
discussed in subsection 5.5.2. Segl nf o isan American Standard Code for Information Interchange
(ASCII) file (smilar toaWindows . | NI file) with multiple sections containing segment descriptor
information.

Table 5-4 lists each of the descriptor files and which are required, optional, or not applicable for each
segment type. Table 5-5 lists the same information for segment descriptor sections within the Segl nf o
descriptor file. The Ver i f ySeg tool will display these two tableswhen the -t flag isgiven on the
command-line so that the latest information from these two tables is available online.

A Segl nf 0 segment section begins with asingle line of the form
[section nane]

where section name is chosen from thelist in Table 5-5. A section continues until another section nameis
encountered, or the end of thefileisreached. A section may appear only once within the Segl nf o file,
but the order in which sections appear is unimportant. Section names are not case sensitive.

If a section name that the tools do not recognizeis encountered, a check is made to see if a helper function
isavailable to process the section. If so, the helper function isinvoked, otherwise an error isissued.
Appendix C describes which tools accept hel per functions. Creation of ahelper functions require
authorization by the DIl COE Chief Engineer.

M8 COE 1&RTS: Rev 3.0 July 1997

Segment Descriptors and Descriptor Files

Descriptor Acct
File COTS Grp
DEINSTALL
FileAttribs
Ingaled
Postinstall
Prelnstall
PreMakelnst
ReleaseNotes
SegChecksum
Seginfo
SegName
Validated
VERSION

Q
=

Data Patch

|—|0|O—|WO|O|O|—|O|O
|—|0|O—|WO|O|O|—|O|O
|—|0|B—|WO|O|O|—|O|O
|—|o|o|—|WO|O|0|—|O|0
o|—|3|x|—|m|o|o|o|—-|o|o]|S

| —||o—|WO|O|"|—|0O|O

R - Required O - Optional N - Not Applicable
| - Created by Integrator or Installation Software

Table 5-4: Segment Descriptor Files

Acct
Section COTS
AcctGroup
"AppPaths
COEServices
Community
Comm.deingal
Compat
Conflicts

Data

Database
DCEClientDef
*DCEServer Def
Direct

FilesList
Hardware

Help

Icons

Menus
“"Network
Permissions
Processes
"Registry
"RegrdScripts
Requires
Security
SharedFile

Q
=

Data Patch

O:UO:UOOOZ:U:UO:UOOZZZZOOOOOO:U_%)

z|m|o|z|o|z|z|z|z|z|o|m|o|0|Zz|z|m|Z|0|O|O|0|0|Z|Z|]

0O|m|0|Z2|0|0|Z2|0|0|0|0|™1|W|0|0|0|Z|Z|0|0|0|0|0|1Z|Z2
O|m|0|0|0|0|0|0|0|0|0||0|0|0|0|0|Z|0|0|0|0|0|0|Z2
Z|m|lo|Zz|o|Zz|Zz|0|Z|Z|0|m|0|0|Z|Z|Z|m|O|O|O|0|0|1Z|1Z2
O||0|Z2|0|0|0|0|0|0|0|m|0|0|Z2|Z|0|Z|0|Z|0|0|0|1Z|Z2

R - Required O - Optional N - Not Applicable
" - NT platformsonly * - UNIX platformsonly
" - COE Component Segments Only

Table 5-5: Seglnfo Segment Descriptor Sections

DIl COE I&RTS: Rev 3.0 July 1997 149

Segment Descriptors and Descriptor Files

Certain general characteristics are common to al files or sections listed in these two tables:

1

All descriptor filesare ASCII datafiles, except for those which are executables (e.g., Post I nstal |,
Prel nstal |, PreMakel nst, and DEI NSTALL) which may be script files or compiled code.
Regardless of platform, the descriptor files may have an optional file extension. The . TXT file
extension is permitted for each descriptor file except DEI NSTALL, Post I nstal | ,Prel nstal |,
and Pr eMakel nst . These are actually executables and may have a. BAT extension (for batch files),
a. EXE extenson (for compiled code), or no extension at all. Thefile extensons are optional, but
developers should conform to standards on the platform for which the segment istargeted.

In describing syntax, options which may appear exactly once are delimited by brackets (i.e., “[]"),
while options that may appear multiple times are delimited by braces (i.e., “{ }"). The “|” (boolean
exclusive or) symbol is used to indicate a selection of one item from a list of choices. The delimiters
are not entered into the actual descriptor file.

Descriptor files may contain comments. Comments are delimited by using either the standard C
conventiof® (e.g., delimited by /* */), or on a line by line basis using the # charatsyle comments
may not be nested. C style comments may not be usedPost I nstal | ,Prelnstal I,

Pr eMakel nst, or DEI NSTALL since these are executable scripts. (These may also be compiled
programs instead of scripts, although scripts are recommended because they can be examined at
integration time for potential problems.)

Blank lines may be used freely and are ignored unless they are within a block of text for insertion,
replacement, etc. Blank lines are ignored when searching for a block to delete or replace. Similarly,
blanks, tabs, and other whitespace are ignored unless they are part of a block to insert or replace.

When a block of text is required, such as in adding a block of text to a community file, the characters
“{* and “}" are used as block delimiters.

Keywords inside a descriptor file are always prefixed with the “$” character.

C style#i f def , #el se, #el i f, #endi f, and#i f ndef constructs may be used in descriptor files,
along with the standard C boolean operators. These constructs may not span segment descriptor
sections. The constants which may be used in these constructs are defined in subsection 5.3.

During installation, the COE installation software sets up to five environment variables:

I NSTALL_DI Ris the absolute pathname to where the segment will be loBdedrist al |) or was
loaded Post | nst al |). MACHI NE_CPU andMACHI NE_CS are set to describe the type of platform
on which the software has been loaded. Valid values for these environment variables are listed in
subsection 5.3YSTEM ROOT (for NT only) is set to point to the directory where Windows is
installed.COE_ TMPSPACE is the location of temporary space allocated for the duration of segment
installation.

Parameters which follow a keyword are given on the same line as the keyword and are separated by
colons. The exception to this rule is when the keyword signals the beginning of a variable length list.
For example,

$PATH: / et c

“3 This should not be misunderstood as stating a preference for C/C++ over Ada or any other language. The
comments referred to are placed in data files, not executable code. C style comments were selected because
they allow a block of text to be commented out by surrounding the block with a single “/* */” pair instead

of including a comment token on each line.

[80 COE I1&RTS: Rev 3.0 July 1997

Segment Descriptors and Descriptor Files

specifies a pathname while

$LI ST
f1l
f2
f3

specifies alist of files.

10. Some segment descriptors, such asthe Requi r es descriptor, specify the name of another segment
that the COE ingdlation tools must search for at install time. To speed up the search process, segment
names are expressed in the form

segnment nane: prefix: hone dir:[version: {patches}]

where segment name is the name of the segment, prefix is the segment’s prefixiome dir is the segment’s
expected home directory, whiersion andpatches are optionalhome dir is searched first, and if the
segment name found there is the same as that specified, a match is dectassfidulfhome dir
does not exist, is not a segment, or the segment name does not match, an exhaustive search is
performed on all segments on all mounted disk partitions.

11. (NT) When a disk drive needs to be specified in a filename, the flename must be enclosed in double
quotes. This is required so that the tools can distinguish between use of *:" as a field delimiter for
descriptors, or as a separator between a disk drive name and a pathname.

12. Some segment descriptors allow a version number or patch level to be specified. See the previous
Requi r es example. If no version number is specified, any version found is successful. If a version
number is specified, an ordinary lexical comparison of primary version numbers is made with zeroes
inserted for any missing digits. For example, a version number such as 3.4/SunOS-4.1.3 is truncated to
just the primary version number which is then expanded to be 3.4.0.0 for comparison purposes.

13. Some descriptor file features require prior Chief Engineer approval, or are restricted to COE-
component segments. These are described in the sections which follow and generally refkiie¥ the
keyword to be specified in the applicable section. This keyword requires an authorization key provided
by the Chief Engineer. The authorization key is based on several segment attributes including segment
name, segment prefix, and the section name to which it applies. The formaskiEthkeyword is

$KEY: permt requested: aut hori zati on key

wherepermit requested is the keyword or section name the key applies toaatharization key is the key
given to the developer by the Chief Engineer. A separate authorization key is requisath foermit
requested.

14. Certain keywords or section names may be applicable to one platform but not another. These are noted
in the discussion below. If the tools encounter a keyword that is not appropriate for a platform, a
warning will be generated and the keyword or section will be ignored.

15. A segment is considered to be a permanent segmentDEMESTALL descriptor is not provided.
This means that the installation tools will prevent a permanent segment from being deleted, but it may
be upgraded by loading a newer version of the segment.

DIl compliance requires the following:

* Segments shall include all required files shown in Table ¥et.i(f ySeg will fail a segment that
does not include a required descriptor file or descriptor section.)

DIl COE I&RTS: Rev 3.0 July 1997 151

Segment Descriptors and Descriptor Files

* Segments shall fully specify all dependencies and conflicts through the Requi res andConfl i cts
descriptors. (Circular dependencies are not alowed.)

e Segments shall fully specify disk and memory requirements (memory may be omitted for data
segments) in the Har dwar e file.

* Segmentsshall not use Post I nstal |, Prel nstal |, PreMakel nst, or DEI NSTALL to make
modifications that the COE installation software will make. Of particular importance is that segments
shall not delete the segment directory during a DEI NSTALL script.

* Segments shall usethe Rel easeNot es file to convey information meaningful to an operator, not the
system integrator. Rel easeNot es files shall not include company names, names of individuals, nor
software trouble report numbers.

* Segments shall specify aversion number and date in the VERSI ON descriptor file and shall increment
the version number for each subsequent release. Version numbers shall fully comply with the
requirements stipulated in Chapter 3 of this document.

5.5.1 Segment Descriptor Files

This subsection describes all the segment descriptorsthat are contained in individual files.

5.5.1.1 DEINSTALL

The DEI NSTALL descriptor fileisan executable, either a script or a compiled program, that isinvoked by
the installation software when the operator has el ected to remove a segment. Thismay occur by explicitly
selecting a segment to remove or by eecting to ingall anew version of the segment. DEI NSTALL should
perform actions such as shutting down segment-owned background processes prior to segment removal.
Operations performed in preparation for a segment update should normally bedoneinPr el nst al I,
while DEI NSTALL is used when the segment is to be “permanently” removed from the system.

If this file does not exist, the segment is assumed to be permanent and cannot be removed except when
installing a new version. If a new version is installed and this file does not exist, the installation software
will use the information in the descriptor directory to undo changes made by the previous installation of the
segment and then simply delete the directory.

For security reasons, tfEl NSTALL script is not run with root-level privileges, unless $ROOT
keyword is given in th® r ect descriptor. Note that tHeKEY keyword must also be specified in the
Di r ect descriptor to acquire root-level privileges.

5.5.1.2 FileAttribs

TheFi | eAttri bs descriptor file allows a segment to specify the attributes (owner, read/write
permissions, group) for each file in the segment. It is created by théhoeAt t ri bs (see

Appendix C). The installation tools, just priorRost | nst al | , will use information in this file to set file
attributes.

Fi | eAttri bs has certain restrictions due to security and segment integrity considerations. The following
will be ignored:

e Files within theSegDescr i p subdirectory
* Files outside the segment

[82 COE I&RTS: Rev 3.0 July 1997

Segment Descriptors and Descriptor Files

e Requeststo set root ownership
e Requests to set UNIX “sticky bits” (e.ghnod 4644)

If Fil eAttri bs is not provided by the segment, the installation tools will automatically do the following
for all except COTS segment types:

e chnod 554 for all files in thebi n subdirectory

« chnod 664 for all files in thedat a subdirectory

« for account groups, set owner to the same group id as specifieddioah& ps descriptor for all
subdirectories excef@egDescri p

« for other segment types, set owner to the same group id as the affected segment for all subdirectories
exceptSegDescri p.

5.5.1.3 Installed

The installation software creates the filest al | ed as segments are loaded. The file specifies the
segment that was loaded, the date and time of the installation, which platform was used to do the
installation, and the version number of the software used to do the installation. This file is located
underneath the segment descriptor directory.

5.5.1.4 Postlnstall

Most of the work required to install segments is performed by the COE installation software through
information contained in the descriptor directory. However, additional segment-dependent steps must
sometimes be performelost | nst al | is an executable, either a script or a compiled program, that
segment developers may provide to handle segment-specific installation fuaftéotise segment has
been copied to disk and installed by the COE. During install&mst, | nst al | may invoke functions
(e.g., prompt the user) described in Appendix C.

ThePost | nst al | descriptor mustot do any operations that are performed by the COE installation
software. For security reasons, P@st | nst al | script is not run with root-level privileges unless the
$ROOT keyword is given in th&i r ect descriptor. Note that tHRKEY keyword must also be specified in
theDi r ect descriptor before root-level privileges will be granted.

5.5.1.5 Prelnstall

ThePr el nst al | descriptor file is identical tBost | nst al | except that it is invoked by the
installation softwaréefore the segment is loaded onto the disk. It nmasdo any operations that are
performed by the COE installation software. For security reasonB; #lenst al | script is not run with
root-level privileges, unless tiR0O0T keyword is given in th®i r ect descriptor. Note that tHgKEY
keyword must also be specified in thier ect descriptor before root-level privileges will be granted.

5.5.1.6 PreMakelnst

PreMakel nst is an optional executable program or script that is invoked hykkel nst al | tool. Its
purpose is to allow a segment to perform “cleanup” operations, i@l nst al | writes the segment
to the distribution media. Example cleanup operations include:

* deleting temporary files
e ensuring no “core” or other “garbage” files are in the segment
« ensuring no compiler “scratch” files, such as temporary intermediate object files, are in the segment.

DIl COE I&RTS: Rev 3.0 July 1997 153

Segment Descriptors and Descriptor Files

Makel nst al | setsthe environment variables| NSTALL_DI R, MACHI NE_CPU, and MACHI NE_CS
prior to invoking Pr eMakel nst .

5.5.1.7 ReleaseNotes

Usethe ASCII file Rel easeNot es to provide information useful to an operator in understanding the new
functionality being provided by the segment or the problems being fixed, and a system administrator
responsible for ingtalling segments. It isnot ahelp file, nor isit information targeted to the system
integrator. Therefore, it must not refer to problem report numbers, version® numbers, release dates,
individuals or companies, point of contact, or similar information. (This type of information is contained
elsewhere, such asin the VERSI ONfile, and duplication of information may lead to conflicting or
confusing information for the operator.) The Rel easeNot es file must not contain any tabs or embedded
control characters.

An example of a “poorRel easeNot es file is

Rel ease: 5.6.3

Poi nt of Contact: John Doe, Tritron Comnpany

Phone: (619) 555-1234

1. Inplenmented NCR #302

2. Added check for nmenory overfl ow

3. Fixed problemw th double scrolling in STR #307
An example of a “goodRel easeNot es file is

This rel ease fixes two known probl ens:

(a) Calculation of range and bearing for polar |atitudes
has been corrected

(b) Display of garbled latitude/longitude in the Track Summary
di splay for ownship has been corrected

The followi ng new features are added with this rel ease

1. Search and Rescue TDA added.
2. Option added to restrict operator deletion of conms nsgs.

TheRel easeNot es is also a good place to convey information to the sites about any COTS features that
are disabled or that may have restrictions on releasability to foreign nationals.

5.5.1.8 SegChecksum

The file SegChecksumis an optional file created by integration software. It contains information
necessary for the System Administrator software to perform an integrity check on the installed software. If
the file does not exist, the integrity check cannot be performed on the segment.

“ The CCEl nst al | er contains a “print” button which allows the release notes to be printed out. It
automatically appends the segment name, and version and date (fr&ERBIeON descriptor) to the

output. This tool also has a button which allows a user to view the release notes on the screen, including
release notes for child segments in an aggregate.

[34 COE I&RTS: Rev 3.0 July 1997

Segment Descriptors and Descriptor Files

5.5.1.9 Seginfo

Segl nf o isan ASCII descriptor filewhich contains segment information in one or more segment
descriptor sections. Table 5-5 lists the possible sections.

5.5.1.10 SegName

The SegNane descriptor file provides the following information:

* segment type ($TYPE keyword)

* segment name ($NAME keyword)

o segment prefix ($PREFI X keyword)

» segment attributes ($TYPE keyword)

e optional aliases for this segment ($EQUI V keyword)

» conditional loading requirements ($LOADCOND)

« company and product name (For UNIX, thisis for documentation only. For NT, these are added to the
registry.)

» if applicable, affected account group, or affected segment for patches ($SEGVENT keyword)

» if applicable, name of parent or child segments ($PARENT, $CHI LD keywords)

The keywords $TYPE, $NAME, and $PREF| X arerequired for each SegName descriptor file. Additional
keywords required depend upon segment type. COE-component segments may not contain $SEGVENT,
$PARENT, or $CHI LD keywords. All other segments must have one $PARENT line, one or more $CHI LD
lines, or one or more $SEGVENT lines.

$COVPANY_NAME: st ringl
$PRODUCT_NAMNE: string2

These two keywords are intended for use with COTS products on NT platforms. If either keyword is used,
both arerequired. They cause theinstaller to insert the company name (stringl) and product name (string2)
in theregistry entry

SOFTWARE\ conpany narne\ product nane

Note: These keywords may be present for a UNIX platform, but are
presently ignored. They are intended for future use in UNIX.

$EQUI V: nane: prefi x

This keyword, which may appear multiple times, allows a segment to define aliases. It isintended to help
legacy segments migrate from an earlier COE (e.g., IMCIS or GCCS COE) to the DIl COE. It is primarily
intended for account group segments, but may be used for other segments aswell. nameisthe desired alias
and prefix isthe alias segment prefix.

This keyword allows a segment from alegacy system to be loaded under an equivalent account group

without the need to modify the legacy segment’s dependency statements. For example, asSagw that
was originally developed for JIMCIS and that it states in its segment descriptors a dependency on an
account group whose nameJi8lCl S. Assume that the legacy segment prefix WE. Assume thabegB
was developed for th@CCS account group. Finally, assume tBagA andSegB are to be loaded on a
new system under an account group whose nai@wsAcct G oup and whose segment prefixXNBG
Then the keyword entries

$NAME: New Acct G oup

DIl COE I&RTS: Rev 3.0 July 1997 155

Segment Descriptors and Descriptor Files

$PREFI X: NAG
$EQUI V: IMCI S: IMC
$EQUI V: GCCS: GCCS

allow SegA and SegB to be loaded properly even though they state a dependency on segments, JMCI S
and GCCS, that do not exist in the new system.

$EXCLUDE: nane: prefix: hone dir

This keyword is used to indicate an account group that a generic segment isto be excluded from. nameis

the name of the account group, prefix is the account group’s segment prefix, aoohe dir is the assumed
location of the account group’s assigned directory. This keyword can only be used with segments that
specify the GENERIC attribute. Ti@har | F andRenot eX account groups are automatically excluded.

$KEY: COE: key

This keyword is required for all segments that have the attritoie CHI LD, COE PARENT, or WEB

SERVER. key is the authorization key obtained from the DIl COE Chief Engineer. For backwards
compatibility, existing COE-component segments are “grandfathered” and may omit this keyword for now.
However, existing segments should be modified to use this keyword to ensure future compatibility.

$LOADCOND

This keyword, which accepts no parameters, is used to indicate that a child segment in an aggregate is to be
conditionally loaded. The child segment is loaded only if the segment does not already exist on the disk or

if the child segment is a later version than one already on the disk. If this keyword is used, the segment
must also have théHl LD or COE CHI LD attribute or else an error is given. This capability is not required

for any other type of segment because the installer tool already checks to be sure an earlier version is not
unintentionally being loaded over a later version.

$TYPE: segnment type[:attributel: attributeZ:...]
where validsegment types are

COrs

ACCOUNT GROUP
SOFTWARE

DATA

DATABASE
PATCH

and valid segmerattributes are

AGGREGATE
CHI LD

CCE CHI LD
CCE PARENT
DCE

VEB SERVER
VEB APP
GENERI C

AGGREGATE is used to indicate that the segment being defined is the aggregate parent segment. It is valid
only for account group, data, and software segment types. Aggregates must list one or more child segments
with the$CHI LD keyword. The COE does not allow an aggregate of aggregates. That is, it is not valid for
Aggregate A to have a child B which is also an aggregate.

[86 COE I&RTS: Rev 3.0 July 1997

Segment Descriptors and Descriptor Files

CHI LD isused to indicate that the segment being defined is an aggregate subordinate segment. The parent
segment must be listed using the $PARENT keyword.

CCE PARENT isused to indicate that the segment being defined is the primary COE segment. Its home
directory will be/ h/ CCE.

CCE CHI LDisused to indicate that the segment being defined is a COE-component segment other than
the parent. Theinstallation tools will verify that the segment is an authorized COE component and if not
will reject the segment. Thisis done through the $KEY keyword.

DCE isused to indicate that this segment isa DCE server or aDCE client application. This attribute must
be specified to use any DCE-related segment descriptors.

WEB SERVER isused to indicate that this segment isaWeb server and a COE-component segment.
VEB APP isused to indicate that this segment is a Web-based application segment.

CGENERI Cisused toindicate that thisis a generic segment that should be added to the account groups as
described in subsection 5.4.11.

Segment types are mutually exclusive; only one segment type may be given. Segment attributes are also
mutually exclusive, except for DCE, Web and GENERI C attributes as follows:

e DCE may be combined with AGGREGATE, CHI LD, or COE CHI LD.

* WEB SERVER may be combined with AGGREGATE, CHI LD, or COE CHI LD.

VB APP may be combined with AGGREGATE, CHI LD, or COE CHI LD.

* GENERI Cmay be combined with all other attributes except WEB SERVER and COE PARENT.

For example, a generic Web mission application that is a child component of an aggregate would be
expressed as

$TYPE: SOFTWARE: CHI LD: WEB APP: GENERI C

The order in which attributes are listed is unimportant.

Note: There are two important considerations with respect to aggregate
segments. First, when a change is made to any segment within an
aggregate, the version number of the parent must be updated to
reflect that a change has occurred. If a child segment was
modified, then the version number of the child must be updated
aswell. Thisisin keeping with good configuration management
practices. Secondly, the parent segment in the aggregate must
specify the version number for each child in the aggregate. See
the $CHI LD keyword. This is required to ensure that the child
components are the exact version that the parent is expecting.

$NANVE: nane

where name is astring of up to 32 alphanumeric characters. Embedded spaces may be used for readability,
but the string must not contain tabs or other control characters.

DIl COE I&RTS: Rev 3.0 July 1997 157

Segment Descriptors and Descriptor Files

$PREFI X: prefi x
This keyword establishes the segment’s assigned ppeifix.
$SEGVENT, $CHI LD, $PARENT
The syntax foS SEGVENT and$PARENT is the same:
keywor d: name: prefi x: hone dir
The syntax foSCHI LDis
$CHI LD: name: prefi x: home dir:version

whereversion musf® include all 4 digits of the version number and must match the version number in the
VERSI ON descriptor for the child segment that is referenced.

This descriptor file may contain one and only BFARENT keyword. Multiple affected segments or child
segments may be listed by listing each segment on a separate line.

Note: Do not confuse the attribute CHI LD with the $CHI LD keyword.
The $CHI LD keyword is used to indicate a list of subordinate
segments in the parent of an aggregate segment. The CHI LD
attribute is used to indicate that a segment is the subordinate
segment in an aggregate whose parent is identified with the
$PARENT keyword.

5.5.1.11 Validated

The COE requires strict adherence to integration and test procedures to ensure that a fielded system will
operate correctly. To facilitate integration and testing\ire f y Seg tool creates the filval i dat ed

to confirm that a segment has been tested for DIl compliance. Subsequent tools in the development,
integration, and installation process use this file to determine whether a segment has been altered, thus
indicating that the segment needs to be revalidated.

The following information is captured:

« the version oWeri f ySeg used to validate the segment

« the date and time validation was performed

* who performed the validation

* acount of all errors and warnings produced/dyi f ySeg for the segment

» achecksum computed to enable detection of modifications made after the segment was validated.

“ This represents a change from the previb&&RTS It has been added to correct configuration
management problems related to mismatched parent/child segments within an aggregate. To preserve
backwards compatibilityVer i f ySeg will presently generate a warning message if the version number is

not specified. However, in a future release it will generate a fatal error so developers should begin to use
the new format given here. If the version number is specNledi f ySeg will generate a fatal error if the

version number is less than 4 digits or does not match the child’s version number.

[88 COE I&RTS: Rev 3.0 July 1997

Segment Descriptors and Descriptor Files

5.5.1.12 VERSION

The format of the VERSI ON descriptor is
version #:date[:tine]
where version # isthe version number for the segment, date is the version date (in mm/dd/yyyy format),

and time isan optional time stamp (in the format hh:mm). Version numbers must adhere to therules
defined in Chapter 3.

Note: This release of the I&RTS extends the year from 2 digits to 4
digits to avoid complications when the year 2000 arrives.
Veri f ySeg will issue awarning for any segment that uses less
than 4 digits, but since this date is used for documentation
purposes only, there is no operational impact if only 2 digits are
used.

5.5.2 Seglnfo Descriptor Sections

This subsection describes all the segment descriptors that are sections within the Segl nf o file.

5.5.2.1 AcctGroup

Syntax for the Acct G oup descriptor is
group nane: group ID:shell:profile flag:honme dir:default profile nane
where

group hame is an aphanumeric string used to identify this account group. The account group name
must be unique (i.e., no other account group may have the same name).

group idisa UNIX group id to beinserted into the password file for accounts created from this group.
The user id is cal culated automatically by examining the password file for user accounts within the
same group and then adding 1 to the highest user id. Group idsless than 100 should be avoided.

shell isthe UNIX shdll to execute when logging in (e.g., / bi n/ csh,/ bi n/ sh). This parameter
should be left blank for NT platforms.

profileflag is 0 if no profiles are allowed, otherwise 1.
home dir isthe home directory for the given account group (e.g., / h/ Acct Gr ps/ Sec Adm).

default profile name is an aphanumeric string identifying the account group’s default profile. This
name is ignored unless the profile flag is nonzero.

In effect,Acct G oup is a template of what to enter into thet c/ passwd file for accounts within this
group.

DIl COE I&RTS: Rev 3.0 July 1997 159

Segment Descriptors and Descriptor Files

Group names and profile names are not case sensitive. The maximum number of charactersin agroup
name, including embedded blanks, is 15. The maximum number of charactersin aprofile name™ is 64. The
maximum number of charactersin the home directory pathnameis 256.

If the account group isto have a default profile, the ingallation software will automatically create the

profile with the name specified. The profile will be set up to have a classification level of TOP SECRET

(unless the segment specifies otherwise), all possible object permissions enabled (see the Per mi ssi ons
descriptor), and al possible menu and icon entries enabled. Note that sSte adminigtrators will not normally

assign the default profile to any user because it would provide greater access than is warranted either from

a “need to know” perspective, or from a perspective of overwhelming the operator with too many features.
The default profile is provided only as a convenient template for creating user profiles.

The profile classification can be explicitly stated by including a line of the form
$CLASSI F: cl assification

within the segment descriptor section. Valid classification values are
UNCLASS
CONFIDENTIAL

SECRET
TOP SECRET

5.5.2.2 AppPaths (NT Only)

TheAppPat hs segment descriptor is used to add a list of executables and DLLs to the NT search path.
The executables are listed immediately after the segment descriptor as in

[AppPat hs]
appl. exe
app2. exe
app3. DLL

The executables and DLLs must be in the segmbntissubdirectory.

The installation tools remove the named executables and DLLs from the NT search path when the segment
is deleted. Refer to subsection 5.5.2.25 for more information on shared files.

Note: Aswith UNIX, it isaviolation of the COE to use this technique
to insert the current working directory into the NT search path.

5.5.2.3 COEServices

Segments frequently require changes to services provided by the operating system. Make such requests
through theCOESer vi ces descriptor to ensure proper coordination with other segments. One or more
entries may follow each keyword.

$GROUPS (UNIX only)

Segments may add entries to thet ¢/ gr oup file as follows:

%6 The maximum in the previou&RTS was limited to 15 characters. This has been extended to support
those services which describe profiles based on a combination of duty position and organization, or similar
approach.

D80 COE 1&RTS: Rev 3.0 July 1997

Segment Descriptors and Descriptor Files

$CROUPS
nane: group id

where name and group id have the meaning defined by the UNIX gr oup file. If the specified name aready
existsin the group file but with a different group id, an error will be generated.

$PASSWORDS (UNIX only)

Segments may occasionally need to add entries into the UNIX password file to establish file ownership.
The syntax is:

| ogi n name: user id:group id:coment: hone dir:shell

where these entries correspond to the entriesin the UNIX passwd file. Multiple lines may be included to
add multiple password entries.

The installation software inserts an “*” for the password field to ensure that these are system accounts, not
actual user login accounts. Segments that need to add a user account must be approved in advance by the
Chief Engineer, and then will generally be approved only for COE-component segments.

The installation software processes $#RASSWORDS keywordbefore the segment is actually loaded onto
disk so thaPost | nst al | scripts which need to set file ownership will work properly.

$SERVI CES

Ports are added to thhet c/ ser vi ces (or NT equivalent) system file through th8ERVI CES
keyword. The syntax is:

$SERVI CES[: conment]
name: port: protocol {:alias}

where
name is the name of the socket to add,
port is the port number requested, and
protocol is eithert cp orudp.

The optionaktomment, if provided, will be inserted into thfeet c/ ser vi ces file by the installation
software.

If the port number requested is already in use under another name, an error will be generated. Note that port
numbers in the range 2000-2999 are reserved for COE component segments and may not be used by
mission application segments.

This keyword should not be necessary for most DCE applications because endpoints are defined
dynamically.

5.5.2.4 Community

Many of the descriptor files direct the installation software to insert, delete, replace or otherwise alter
blocks of text in ASCII files. Th€rmuni t y descriptor is provided to issue similar commands to the
installation software for which no corresponding descriptor exists. It is intended to be a “catch all” and

DIl COE I&RTS: Rev 3.0 July 1997 161

Segment Descriptors and Descriptor Files

should be used carefully, and only when there isno other way to accomplish the modificationsrequired.
Ver i f ySeg will fail any segment which attemptsto use a Conmuni t y descriptor to modify afilethat is
aready handled by another descriptor. For example, inserting aport entry into/ et ¢/ servi ces is
handled by the COESer vi ces descriptor so Ver i f ySeg will fail a segment that attempts to do this
through a Conmuni t y descriptor.

Segment developers shal use the Conm dei nst al | descriptor to undo changes made by the
Conmuni ty file. Conm dei nst al | isinvoked when a segment isremoved and is the inverse of the
Communi t y file. The Comm dei nst al | isneither required nor useful if the segment is a permanent
segment.

The commands listed below are avail able for both the Conmuni t y and Conm dei nst al | files. Blocks
of text are delimited by braces, where the opening and closing brace are on aline by themselves. When
commands require that a textual search be done, embedded spaces and control charactersareignored
during the search.

To illustrate how the commands work, assumethefilel DE. TEST contains the following text:
Sample file
Define runtine vars
setenv OPT_HOME / h/ OPT
set env OPT_DATA $OPT_HOVE/ dat a

set a test var
setenv testvar $HOVE

set filec

setenv testvar2 $HOWVE/ data

end of exanple file
$APPEND
Append the block of text which follows to the end of thefile.
Example:

?APPEND

This is an exanple to append at the end of a file
source ny_script
#

}
$COWMVENT: char

Using the character specified, find the block of text which follows and comment it out. This effectively
ddetestext, but has the advantage that it can easily be uncommented.

The command segquence
$COMVENT: #
{

set a test var

62 COE I1&RTS: Rev 3.0 July 1997

Segment Descriptors and Descriptor Files

setenv testvar $HOVE
set filec

}
will replace the text to modify the file as follows:
Sample file
Define runtime vars
setenv OPT_HOVE / h/ OPT
setenv OPT_DATA $OPT_HOVE/ dat a
set a test var
#setenv testvar $HOMVE

#
#set filec

setenv testvar2 $HOVE/ dat a
end of exanple file

Notice that the blank line between set env and set isignored in searching for the linesto delete, but is
preserved in the commented out version of thefile.

Note: Be careful to note that the ‘#' character is not a valid comment
delimiter for all community files! (e.g., X and Motif resource
files use ‘I’ as a comment delimiter.)

$DELETE [ALL]

Find the block of text which follows and delete it from thefile. If ALL is specified, delete every occurrence
in thefile.

The command segquence

$DELETE
{

set a test var
setenv testvar $HOVE
set filec

}

will delete the block of text to modify thefile as follows:
Sample file
Define runtime vars
setenv OPT_HOVE / h/ OPT
set env OPT_DATA $OPT_HOVE/ dat a

setenv testvar2 $HOVE/ dat a

end of exanple file

DIl COE I&RTS: Rev 3.0 July 1997 163

Segment Descriptors and Descriptor Files

Notice that the blank line between set env and set isignored in searching for the linesto delete, but is
ddleted in theresulting version of thefile

$FI LE: fil enane
Name the file to which the commands that follow apply.
Example:

$FI LE: / h/ | DE/ Scri pts/ | DE. JMCI S

$1 NSERT [ALL]

Find the first occurrence of the first block of text, then insert the second block of text immediately after it.
If ALL is specified, insert the second block of text after every occurrence.

Example:

$I NSERT

{
setenv OPT_DATA $OPT_HOVE/ dat a

}

{
set env OPT_BI N $OPT_HOVE/ bi n

setenv OPT_SRC $OPT_HOWE/ src
}

The resulting changes to the examplefile are;
Sample file
Define runtime vars
setenv OPT_HOVE / h/ OPT
setenv OPT_DATA $OPT_HOVE/ dat a
setenv OPT_BI N $OPT_HOVE/ bi n
setenv OPT_SRC $OPT_HOWE/ src

set a test var
setenv testvar $HOVE

set filec
setenv testvar2 $HOVE/ dat a
end of exanple file

$REPLACE [ALL]

Replace the first occurrence of the first block of text, if found, with the second. If ALL is specified, replace
every occurrence.

Example:
$REPLACE

{
setenv OPT_HOVE / h/ OPT

84 COE I&RTS: Rev 3.0 July 1997

Segment Descriptors and Descriptor Files

}

{
setenv OPT_HOMVE / hone2/ OPT

}

Embedded spaces and control charactersareignored in the search, but are preserved in the replacement.
Caseispreserved in the search and in the replacement.

$SUBSTR DELETE [ALL] | INSERT [ALL] | REPLACE [ALL]

When performing atextual search, search for a matching substring instead. Insertions, deletions, or
replacements are made as indi cated.

$UNCOMVENT: char

Find the block of text which follows and uncomment it. The comment character ischar, but the block of
text which follows the $UNCOMVENT command does not contain the comment character.

Example (undo the effects of the $COMVENT example above):
$UNCOMVENT: #
{

set a test var
setenv testvar $HOVE
set filec

}
Blank lines will aso be uncommented if there are any between
set a test var
and
set filec
Consider amore complete example. The following will insert two new environment variables at the end of

thefile, replace OPT_HOVE with OPTI ON_HOVE, replace OPT_DATA with OPTI ON_DATA, and replace
all occurrences of the substringt‘var ” with “st _var ”. This example also shows the use of comments.

DIl COE I&RTS: Rev 3.0 July 1997 165

Segment Descriptors and Descriptor Files

/* This is a multi-line coment
just like in standard C.
* [

This is a single |line conrent

Assunme file is in IDE Scripts subdirectory
$FILE: / h/ | DE/ Scri pts/ | DE. TEST

$REPLACE

{

setenv OPT_HOVE / h/ OPT

setenv OPT_DATA $OPT_HOVE/ dat a
}

{
setenv OPTI ON_HOVE / h/ OPTI ON

setenv OPTI ON_DATA $OPTI ON_HOWE/ dat a
}

$SUBSTR REPLACE ALL
{

st var

}
{

st _var

}
$APPEND

Theresultingfilel DE. TEST is

D66 COE I1&RTS: Rev 3.0 July 1997

Segment Descriptors and Descriptor Files

Sample file

Define runtime vars

setenv OPTI ON_HOVE / h/ OPTI ON

setenv OPTI ON_DATA $OPTI ON_HOWE/ dat a

set a test var
setenv test_var $HOMVE

set filec
setenv test_var2 $HOVE data

end of exanple file

This example shows the use of comments to enclose modifications between a BEGIN/END pair. This
technique is recommended when making modifications to community files to make it easer to determine
changes made as segments are ingalled.

Note: This technique is used by the installation software as
environment extension files are modified. Therefore, developers
must not put such comments in environment extension files.

5.5.2.5 Comm.deinstall

Conm dei nst al | istheinverse of Conmuni t y. Its purpose isto undo modifications made to
community files when a segment isremoved from the system.

The corresponding Conm dei nst al | file to undo the changes made in the example from the
Communi t y subsectionis:

DIl COE I&RTS: Rev 3.0 July 1997 167

Segment Descriptors and Descriptor Files

$FILE: / h/ | DE/ Scri pt s/ | DE. TEST
$REPLACE

{

set env OPTI ON_HOME / h/ OPTI ON

setenv OPTI ON_DATA $OPTI ON_HOWE/ dat a
}

{
setenv OPT_HOVE / h/ OPT

setenv OPT_DATA $OPT_HOVE/ dat a
}

$SUBSTR REPLACE ALL
{

st _var

5.5.2.6 Compat

Subsequent rel eases of a segment are not always backwards compatible. The Conpat descriptor isused to
indicate the degree to which backward compatibility is preserved with the newly released segment. Thisis
achieved by listing version numbers for previous releases which the current release supports. In the sense
used here, backwards compatibility means that the segment being released will work with other segments
that have been compiled and linked with an earlier rdease version.

The format of the Conpat descriptor isasingleline containing one of three possible entries:

+ALL Thisindicates that the current rd ease is backwards compatible with al previous
releases.
-NONE Thisindicates that the current rdease is hot backwards compatible with any

previous rel ease.

version list Thisindicates that the current rdease is backwards compatibleto alist of
versions. Version lists are denoted by the $LI ST, SEARLI EST, and
$EXCEPTI ONS keywords.

For example, suppose the new My Seg releaseis version 3.2.5.4 and that it is compatible with all versions
from 2.9.1 up to the present with the exception of versions 3.0.1.2 and the 3.1 version series. Then the
Conpat filewould contain the following entries:

68 COE I1&RTS: Rev 3.0 July 1997

Segment Descriptors and Descriptor Files

First nunber listed is earliest conpatible version
$EARLI EST

2.9.1

Remai ni ng version nunbers are exceptions

$EXCEPTI ONS

3.0.1.2

3.1

When a digit is omitted from the version number, or an asterisk isin place of the digit, thereis an assumed
wildcard in that digit position. That is, any digits would be acceptable in that position.

The $LI ST keyword is used to indicate an explicit list of compatible versions. $L1 ST is mutually
exclusive with the $EARL| EST/$EXCEPTI ONS keyword pair. When specifying alist, arange can be
indicated by the optional keyword $TQ Thus, the previous example could a so have been done as

In some cases, one or more patches must be applied to preserve compatibility. The patches are listed by
number immediately after the version number by using a colon between patch numbers. This may be done
only with the $L1 ST keyword. For example,

$LI ST

2.9.1: P4: PS5

3.0.1.1

3.0.2: P8 $TO 3.0.4: P7

This means that the current version is backwards compatible with

e 2.9.1, but only if patches P4 and P5 have been applied

e 3.0.1.1 with no restrictions regarding patches

e 3.0.2through 3.0.4 with therestriction that patch P8 must be applied to version 3.0.2 and patch P7
must be applied to version 3.0.4.

If no Conpat fileexists, the present version is assumed to not be backwards compatible with any previous
releases. That is, - NONE is assumed.

5.5.2.7 Conflicts

Two segments may conflict with one another so that one or the other, but not both, can beinstalled. The
Confl i ct s descriptor isused to specify such inter-segment conflicts. The format isalist of conflicting
segmentsin the form:

segnent nane: prefix: hone dir[:version{:patch}]
where segment name is the name of the conflicting segment as given in the segnsagidanme descriptor
file, prefix is the conflicting segment’s segment prefix, ode dir is the conflicting segment’s home
directory.

TheConf | i ct s descriptor is essentially the inverse of Regjui r es descriptor.

DIl COE I&RTS: Rev 3.0 July 1997 169

Segment Descriptors and Descriptor Files

5.5.2.8 Data

The Dat a descriptor is used to describe where data files are to be logically 1oaded and their scope (global,
local, or segment). Only one of the three scopes may be specified in the descriptor; that is, a data segment
has one and only one scope.

The syntax is

$SEGVENT: segnane: prefi x: home dir
for segment data, or

$LOCAL: segnane: prefi x: hone dir
for local data, or

$G.OBAL: segnane: prefix: home dir

for global data, where segname, prefix, and home dir refer to the affected segment. The segname and prefix
must match the name given in the affected segm8atiNane descriptor. Figure 5-9 shows that the data
to install is underneath the segmertét a subdirectory.

5.5.2.9 Database

TheDat abase segment descriptor is used to identify information such as object dependencies that are
within the database and therefore cannot be resolved without the use of the DBMS. There are five
keywords used under this descriptor to track object-level inform&REFERENCES, $MODI FI ES,

$ROLES, $SCOPE, and$ACCESSES. The first four are used by database segments, the last is used by
database application segments. Their usage is discussed below.

$SCOPE: scope

This keyword specifies the scope of the database objects. Legal valsepéoare UNI QUE, SHARED,
andUNI VERSAL. Scope is required for database segments, but it is not presently used. It is reserved for
future use and required now so that segments will not require modifications later.

$REFERENCES

The$REFERENCES keyword is followed by a list of the individual database objects that the database
segment depends upon which are external to the segmerRedbher es segment descriptor must be
used to state a dependency upon the segments whose objects are listBRERERENCES. Version
compatibility will be checked using tiRequi r es descriptor so it is not repeated here. The format for the
object list is

$REFERENCES
obj ect nane: schena

For example, assume that the GSORTS database segment refereGGNFRRY_CCDE table in the
S&M segment and theORTS table in the NID segment. The schema owners for S&M and NID
respectively ard ABLE_MASTER andNI D. The appropriate descriptor is

$REFERENCES
COUNTRY_CCDE: TABLE_MASTER
PORTS: NI D

Di0 COE 1&RTS: Rev 3.0 July 1997

Segment Descriptors and Descriptor Files

$MODI FI ES

The $MODI FI ES keyword isfollowed by alist of the externa database objects that the database segment
modifies by adding triggers, or by including them in procedures or functions. All segments whose objects
are listed here must also appear under the Requi r es descriptor. The format for the object list is

$MODI FI ES
obj ect nane: schema: nodi fication type: nodi fication nane

The object name and schema follow the samerules as the $REFERENCES keyword. Modification type is
used to stipulate what has been done. Itslegal valuesare TRI GGER for database triggers or PROCEDURE
for database functions, procedures, or packages. Modification name isthe name of thetrigger or procedure
that is attached to the object. An example follows defining atrigger named GSORTS_NI D_COPY that is
attached to the NID databas€6RTS table.

$MODI FI ES
PORTS: NI D: TRI GGER: GSORTS_NI D_COPY

$ROLES

The$ROLES keyword is followed by a list of the database roles created by the database segment. Its
format is

$ROLES
rol e name

An example that defines two roles follows.

$ROLES
EWR RO
EW R_DATAL_RW

It is recommended that comments be placed in the segment descriptor to describe what these roles are for
and how they are intended to be used. This is a convenient place to document such important information.

$ACCESSES

The $ACCESSES keyword is used in a software segment rather than a database segment. It associates
individual applications within a software segment to their supporting database roles. Its format is

$ACCESSES
appl i cati on name: rol e name. segnent nane

Theapplication name is the name of the executable within the segniste nameis the name of the

database role used by the applicatsagment name is the name of the database segment that owns that

role. That segment will be searched by the installer tool, if necessary, to obtain the DBO account name. An
example follows associating tE®\W R_W DE application to th&W R_ROrole.

$ACCESSES
EW R _W DE. FMX: EW R_RO. EW RDB

Note: Do not confuse the Dat abase segment descriptor with the
database segment type. The segment descriptor, described in this

DIl COE I&RTS: Rev 3.0 July 1997 171

Segment Descriptors and Descriptor Files

subsection, describes specialized processing for the COE to
perform on a segment which is of segment type ‘database.’

5.5.2.10 DCEClientDef

This segment descriptor is used to define the characterigtics of DCE Clients. The server ingtallation script
readsthe DCECI i ent Def section from the Segl nf o file for install ation specific information. The

associated keywords are used to describe the DCE client.

Table 5-6 lists the keywords applicable to DCE segments that use the DCE COE application development
library. Asindicated in thetable, some are for servers only, some are for clientsonly, and some may be
used for both client and server segments. For amore complete description of these keywords and the use of

the DCE COE library please refer to the DIl COE DCE Programmers Guide.

Keyword Client Server
ACLMGRDEFAULT n/a M
ACLMGERI NFO n/a ®)
ACLMGRTYPE n/a ®)
ACLMGRUUI D n/a ®)
ATTRI BUTE (0] 6]
AUDI TI NFO n‘a 6]
DCEACL n/a *
DCEADM NGROUP n/a ®)
DCEBOOT n/a ®)
DCECLI ENT M n/a
DCEGROUP O 6]
DCESERVI CE n/a M
DEBUGVESSAGES n/a ®)
DFSFI LES O 6]
| NTERFACE M M
MVESSAGES n‘a 6]
MGMVTVAPPI NG n‘a 6]
OBJUUI D n/a M
PERM SSI ON n/a M
RPCSECURI TY n/a O
SERVERTHREADS n‘a O
SERVI CEABI LI TY n/a ®)
Uul D n/a M
Legend: M - Mandatory O - Optional

n/a - Not Applicable

Table 5-6: DCE Client and Server Keywords

$ATTRI BUTE

The format for this keyword isthe same for both clients and servers. Refer to subsection 5.5.2.11 for afull

description.

$DCECLIENT client:title

* - Reserved for Future Use

Di2 COE 1&RTS: Rev 3.0

July 1997

Segment Descriptors and Descriptor Files

client isthe name of the client application and titleis a brief description of the client application. DCE
client segmentsrequirethe $DCECLI ENT keyword. This provides the name of the client application and
annotation.

Example:
$DCECLI ENT CALCclient: Basic cal cul ator client

$DCECROUP

The format for this keyword isthe same for both clients and servers. Refer to subsection 5.5.2.11 for afull
description.

$DFSFI LES

The format for this keyword isthe same for both clients and servers. Refer to subsection 5.5.2.11 for afull
description.

$I NTERFACE client:server: CDS entry

The $I NTERFACE keyword i dentifies the name of the server and the location of ther pcpr of i | e used
to initiate servers. client isthe name of the client application, server isthe identity of a server used by the
client, and CDSentry isthelocation in the Cell Directory Service (CDS) of anr pcgr oup or
rpcprofil e used toinitiate a search for servers. A client may make use of multiple servers, including
servers offered by other segments.

Example:

$I NTERFACE CALCcl i ent: CALCserver:/.:/h/ CALC groups/ servergroup

Note: Segments which use the DCEC i ent Def descriptor must also
indicate the DCE segment attribute or else the COE tools will
issue a fatal error.

5.5.2.11 DCEServerDef (UNIX Only)

This segment descriptor is used to define characteristics of DCE servers. It isnot required, nor isit legal,
for DCE client applications. The associated keywords are used to describe the server. The server
installation script readsthe DCESer ver Def section from the Segl nf o file for ingalation specific
information. Table 5-6 lists the applicable keywords for describing DCE servers. Note that some of the
keywords are also used for describing characteristics of client segments.

Most of these keywords are used by the standard DCE installation program to set attributes in CDS, to
include attributes within the configuration entry for the application. Refer to the DIl COE DCE
Programmer’s Guiddor more information.

Before describing the applicable keywords, there are some important things to note about DCE servers.

* Use $DCESERVI CE instead of the $SERVERS keyword (Net wor k descriptor) to define DCE-based
servers.

* Document Didributed File Service (DFS) files with the $DFSFI LES keyword.

e Include a$PASSWORDS entry in COESer vi ces to establish a UNIX userid for each server principal.

DIl COE I&RTS: Rev 3.0 July 1997 173

Segment Descriptors and Descriptor Files

» Deveopers should normally provide a single DCE server in a segment. It would be unusual to need to
provide more than one.

Note: Segments which use the DCESer ver Def descriptor must also
indicate the DCE segment attribute or else the COE tools will
issue a fatal error.

$ACLMGERDEFAULT servi ce:interface:type: nane: perm ssi ons

Values of the AcIMgrDefault attribute are used to give the server ACL an initial set of values. This attribute
is multi-valued and can contain any combination of 'group’ or 'user’ ACL entries. The meaning of the
parameters are:

e service— The name of the server application. This is the same value as foun$DCERERVI CE
service field.
* interface — The name of an interface implemented by the server. This interface must match the
interface name defined in an IDL file and as defined irthdT ERFACE keyword.
* type - one of the following values:
« USER
« CROUP
« ANY_OTHER
¢ UNAUTHENTI CATED
e name - Used withUSER or GROUP to identify the specific user or groups.
* permissions- This field is defined in th8 PERM SSI ON keyword. The values used are defined in the
name field.

Following are examples of the $ACLMGRDEFAUL T keyword:

$ACLMERDEFAULT CALCser ver: cal cul at or : GROUP: CALC- user s: ast
$ACLMERDEFAULT CALCser ver: cal cul at or : UNAUTHENTI CATED: t

$ACLMERI NFO servi ce: ngr_nane: desc
This keyword provides ACL management information. The parameters are:
e service - The name of the server application. This is the same value as foun$BPAEBERVI CE
service field.
e mgr_name - The ACL manager name.
* desc - A description (annotation) of the Reference Monitor.
The following is an example:
$ACLMERI NFO CALCserver: cal cul at ors: Sanpl e Cal cul at or Ref non

If this keyword is omitted, the ACL manager is given the same name as the server application (e.g.,
CALCserver).

$SACLMGRTYPE service: obj type:structure_type
This keyword is reserved to define the structure and type of the data file used to support the standard ACL

Manager. It can contain one or more of the supported object types and one of the structure types. The
meaning for each parameter follows.

Di4 COE 1&RTS: Rev 3.0 July 1997

Segment Descriptors and Descriptor Files

e service - Thename of the server application. Thisisthe same value as found in the $DCESERVI CE
service fidd.
* obj_type - Thefollowing object types have been defined:
e acl obj ect - supports ACLs on ssimple objects
* def obj ect - supportsdefault inheritance ACLs on objects
« def cont ai ner - supportsdefault inheritance ACLs on containers
If the keyword is omitted, the default isacl obj ect .
e dructure_type - The following structural attributes are defined:
« flat -thedatabase containsno hierarchical structure
e hi er -thedatabase supports full hierarchy (e.g. afilesystem)
e bil evel -thedatabase doesnot support containerswithin containers
e spar se - the database supports sparse searching
* nol eaf -the database permitshierarchy but only as a side effect of creating a leaf
If the keyword is omitted, the default isf | at .

Note: Theinitial release supportsonly f | at , bi | evel ,and hi er.
Thefollowing isan example:

$SACLMGRTYPE CALCserver: acl obj ect: fl at
$ACLMERUUI D service: uuid

Every ACL manager defines a UUID that represents a set of permissions supported by the ACL manager.
This keyword allows the user to define this UUID. The parametersare:

e service - The name of the server application. Thisisthe same value as found in the $DCESERVI CE
service fidd.
e uuid - The combined major and minor version numbersidentify one generation of an interface

If the keyword is omitted, a new unique ID is automatically generated.

The following is an example:

$ACLMERUUI D CALCser ver : 6bad40bf 6- e2ee- 11cf - 8d13- ce9cdd02aa77
$ATTRI BUTE nane: [uui d] : mul ti val ued: encodi ng: annot ati on

The DCE COE library makes use of pre-defined attributes within the CDS configuration entry for an
application. The application can define additional attributes by using the SATTRI BUTE keyword. The
COE installation process uses this keyword to define the attribute in the CDS schema.

Each attribute type definition in the schema consists of attribute type identifiers (UUID and name) and
semanticsthat control the instances of attributes of thistype. An attribute instanceisan attributethat is
attached to an object and has a val ue (as opposed to an attribute type, which has no values but simply
defines the semantics to which attribute ingtiances of that attribute type must adhere). Attribute instances
contain the UUID of their attribute type.

The identifiers of attribute types are aname and a UUID. Generadly, the nameisused for interactive access
and the UUID for programmatic access. The client can also have $ATTRI BUTE entries so take care not to
confuse the two.

DIl COE I&RTS: Rev 3.0 July 1997 175

Segment Descriptors and Descriptor Files

The meaning of each parameter follows:

¢ name - The name of the attribute.

e uuid - The UUID of the attribute.

¢ multivalued - Legal valuesareyes or no. The multivalued flag specifies whether or not multiple
instances of the attribute can be attached to a single application. For example, if themultivalued flag is
st yes, asingle application can have multiple instance of attribute Type A. If theflagisset tono, a
single application an have only one ingtance of attribute Type A.

» encoding - This defines thelegal encoding for instances of the attribute type. The encoding controls the
format of the attribute instance values, such as whether the attribute value is an integer, string, a UUID,
or avector of UUIDs that define an attribute set. Legal valuesfor this parameter are: any, voi d,
printstring,stringarray,integer,byte,uuid,i1l8n_data,attrset,and
bi ndi ng.

e annotation - The annotation field istext that describes the function of the attribute.

The following is an example (this is intended to be asingle line):

$ATTRI BUTE unknown_i ntercel | _conms: 171e0f f 2c- d12e- 11de- dd7b-
080009353559: no: i nteger: Handl es intercell access control for foreign
users

$AUDI TI NFO servi ce: first: num events: nsg code

This keyword establishes the audit event numbering and message code capability. The parameters are:

e service- The name of the server application. Thisis the same value as found in the
$DCESERVI CE servicefied.

o first - Thefirst number of the audit event.

e num_events - The number of events.

* msg code - 3-character message component for events (see the $SERVI CEABI LI TY keyword)

Thefollowing isan example:
$AUDI TI NFO CALCser ver: 281587713: 2: CAL

$DCEADM NGROUP gr oupnane

Members of this group are used to control administrative access to application
information. These members are able to change acl's, add members to groups, start/stop
servers, install/deinstall clients and servers.

e groupname - The administrative group nameis normally composed of the segment prefix and the word
“admi n.” Therefore if the segment prefix GALC, the default group name for administration is
CALC- adni n. The default setting ISEGQVENT- adni n.

The following is an example:

$DCEADM NGROUP CALC- admi n

D16 COE 1&RTS: Rev 3.0 July 1997

Segment Descriptors and Descriptor Files

$DCEBOOT servi ce: starton

The $DCEBOOT attribute identifies when a server should be started. The valueisalist of one or more of
the following which may not be modified after creation.
e service - Thename of the server application. Thisisthe same value as found in the $SDCESERVI CE
service fidd.
e dtarton - One or more of the keywords can be used but must be separated by semicolons.
e auto - Sartif aremote call that would be serviced by this server isreceived by dced. This
isignored for those serversthat are repositories.
* boot - Startat system startup.
o explicit -Sartifdced receivesacommand to start the server (such asthe server start
command in dcecp).
o failure-Sartif dced detectsthat the server exited with anon-successful error code.

Following are several examples of the $DCEBOOT keyword:
$DCEBOOT CALCserver: boot;explicit;failure

Thisexample states that the CALCser ver isstarted at boot time. If the server exits with anon-successful
error code it will automatically be restarted. The server can also be started from the command line.

$DCEBQOOT CALCserver: boot ; failure
This examples shows the CALCser ver garting only at boot time and when a error has occurred.
$DCEGROUP gr oupnare

Additional groups may be needed for specific applications. For example a CALC- adder s group might be
created for a calculator application containing users who are alowed to perform the add operation but not
the subtract, division or multiplication functions.

e groupname - The name of a user group used to control accessto the server services. The group
servername-users is automatically created and does not require a $SDCEGROUP entry..

The following is an example:

$DCEGROUP CALC- adder s
$DCESERVI CE service: UNI Xid[: principal [:group[:org]]]

DCE server segmentsrequire the $SDCESERVI CE keyword. This provides the name of the server
application, ownership and run time authentication principle. The applicable parameters are:

* service— The name of the server application. A segment may contain multiple servers. When there is
only one server in a segment, the name shoulstlger ef ser ver whereSegPr ef is the segment
prefix. When there are multiple servers in the segment, each one is identified by a separate
$DECSERVI CE entry and should be uniquely named using the segment prefix.

e UNIXid — The UNIX account used in running the server. Usually supplied by a sepRASSWORD
keyword.

e principal — The name for the DCE principle to use in running the server. Default is the same as the
server.

e group — The group used to control access to server CDS entries. Each server principal belongs to this
group. Default iSEGVENT- ser ver s.

DIl COE I&RTS: Rev 3.0 July 1997 177

Segment Descriptors and Descriptor Files

* organization — The DCE organization for the server principal accounts. Default is none.
The following is an example of$DCESERVI CE entry with the minimum required parameters:

$DCESERVI CE CALCser ver: CALC

Note: The UNIX account must exist before the segment is installed.
Otherwise the installation will be unsuccessful.

The following is an example which uses all the parameters:

$DCESERVI CE CALCser ver: CALC: CALC: engi neeri ng: acom

In this example the install script will create the DCE account CALC, the group

engi neeri ng and the organization acom if they do not already exist. If these fields
are blank the principal used in running the server is CALCser ver , the group isnone,
and the organization isnone.

$DEBUGVESSAGES servi ce: routing

service is the name of the service (e @ALCser ver) androuting specifies how and where the debug
message should be sent. The formatdating is:

conponent : sub_conp. level,...:out_formdest[;out_formdest...]
[GCESTO {sev | conponent}]

whereout_form, dest, andsev have the same meanings as for8MESSACES keyword.component is the
three-character serviceability component code for the program whose debug message levels are being
specified,sub_comp.leve is a serviceability subcomponent name, followed (after a dot) by a debug level
(expressed as a single digit from 1 to 9). Nine serviceability debug message levels (specified respectively
by single digits from 1 to 9) are available. The precise meaning of each level varies with the application or
DCE component in question, but the general notion is that ascending to a higher level (for example, from 2
to 3) increases the level of informational detail in the messages. Setting debug messaging at a certain level
means that all levels up to and including the specified level are enabled.

Note: Multiple subcomponent/level pairs can be specified. If there are
multiple subcomponents and it is desired to set the debug level to
be the same for al of them, then the form:
conmponent : *. | evel will do this (where the * is used as a
wildcard to specify all subcomponents).

The following are examples $DEBUGVESSAGES:

$DEBUGVESSAGES CALCser ver: coe: *. 9: STDOUT: -
$DEBUGVESSAGES CALCserver: coe: *. 4: TEXTFI LE: / t np/ | og_% d; STDERR: -

$DFSFi | es
This keyword is similar in purpose to thel esLi st segment descriptor (subsection 5.5.2.13). It is used
instead ofi | esLi st because the files listed are maintained by DFS, not by the native operating system.

The keyword is followed by a list of filenames in the form:

fil enane access

Di8 COE 1&RTS: Rev 3.0 July 1997

Segment Descriptors and Descriptor Files

where filename is the DFS filename used by the application, and access indicates the operations performed
on thefile (RAK). All filenames shall start with/ . . . / cel | nane/fs/.

Thiskeyword is provided for information only.

$I NTERFACE service:interface:title

The $1 NTERFACE keyword defines the server interface as presented in the IDL file. This information
must match exactly. The $| NTERFACE keyword describes a set of runtime routines that allows a client
program to use a particular service provided by another application program. The parameters are:

e service— A service entry (server application) from $IBCESERVI CE keyword.

* interface — The name of an interface implemented by the server. This interface must match the
interface name defined in an IDL file.
» title- The title of the interface, used as an annotation in the DCE endpoint map.

Example:

$I NTERFACE CALCserver: cal cul ator: Basi ¢ Sanpl e cal cul ator Application

SMAMIMAPPI NG ser vi ce[: stri ng]

This keyword is used to control and configure the management functions that all DCE applications support.
Management functions allow a client to request interface information, server principal name, or statistics
from the server, to ping the server, or to stop the server. There are five management operations that define
the relationship between permissions understood by the ACL manager/Reference monitor permissions.
This keyword defines the permissions that must be present to allow the client to perform the management
function. The ACL to be checked is attached tosther exec object for the server.

The parameters are:

e service - The name of the server application. This is the same value as foun$BAESERVI CE
service field.

« diring - The permissions to allow the client to perform management function $MB&r MAPPI NG
keyword is not specified or this parameter is omitted,t c is assumed which represents the standard
'test’ and 'control’ permissions.

The following is an example:
$MEGMIMAPPI NG CALCserver:ttttc
$MESSAGES servi ce: routing

The$MESSAGES and$DEBUGVESSAGES keywords are used to set DCE serviceability options. The
parameters are:

e service- is the name of the service (Same aBDEESERVI CE)
* routing - how to route messages to their destination. This parameter is of the form

sev:out_formdest[;out_formdest . . .] [GOESTO {sev | conp}]

where

DIl COE I&RTS: Rev 3.0 July 1997 179

Segment Descriptors and Descriptor Files

e sev- Specifies the severity leve of the message, and must one of the following: FATAL, ERROR,
WARNI NG, NOTI CE, or NOTI CE_VERBQCSE. If the message isto apply to all severity levels, use the
wildcard character * asthe severity level value.

« out_form- Specifies how (e.g., output form) the messages of a given severity level should be
processed. Thelegal valuesare Bl NFI LE, TEXTFI LE, FI LE, DI SCARD, STDOUT, or STDERR.
out_form may be followed by a two-number specifier of the form: .gens.count where gens is an integer
that specifies the number of files (i.e., generations) that should be kept and count is an integer
specifying how many entries (i.e., messages) should be written to each file. The wildcard character *
may be used for gens or count to indicate an unlimited number of generations or messages
respectively.

e dest - Specifieswhere (e.g., destination) the message should be sent and is a pathname. Filenames may
not contain colons or periods. The field can be left blank if the out_form specified is DI SCARD,
STDQOUT, or STDERR. The field can also contain the C formatting string % d in the filename which,
when the fileis written, will be replaced by the process ID of the program that wrote the message.
Multiple routings for the same severity level can be specified by adding the additional desired routings
as semicolon-separated strings in the following format:

NOTI CE: Bl NFI LE. 50. 100: / t np/ | 0g% d; STDERR: -

e QGOESTO- Permits messages for the severity whose routing specification it appearsin to be routed to

the same destination asthose for the other specified severity level. Examplesare;

WARNI NG STDERR: GOESTO, FATAL

FATAL: STDERR: ; FI LE: / t np/ f 00

This means that WARNI NG messages should show up in three places. twiceto st der r , and then once
tothefile/ t np/ f oo.

The following is an example of the SMESSAGES keyword:

$MESSAGES CALCser ver: *: STDOUT: -

$OBIJUUI D service:interface: objuuid

Standard DCE has the ability for servers to associate themselves with “objects”

(identified by uuid’s), and for clients to request a binding to any server providing a
specified object. The objects supported by a server are identified withjpcent r y

within CDS. This facility is designed to allow the location of coarse-grained objects (e.g.
specific branches of a bank, or classes of users). It is not designed for fine-grained objects
(e.g. an individual account in a bank).

The DCE COE library allows the use of this capability. The server isresponsible for registering supported
objects using standard DCE calls. The client must have the uuid’'s of desired objects pre-configured within
its services attribute for the appropriate interface.

e service - name of service (same as that listed iffB€ESERVI CE keyword)

» interface - name of the interface (same as identified irffhNTERFACE keyword)

« objuuid - The universal unique identifier that identifies a particular RPC object. A server specifies a
distinct object UUID for each of its RPC objects; to access a particular RPC object, a client uses the
object UUID to find the server that offers the object.

e Sometime the object UUID is the “nil” UUID; when calling an RPC runtime routine, you can
represent the nil UUID by specifyifdJLL. In this case, the object UUID does not represent
any object.

The following is an example of the $OBJUUI D keyword:

[80 COE I&RTS: Rev 3.0 July 1997

Segment Descriptors and Descriptor Files

$OBJUUI D CALCserver: cal cul at or: 01eb03d6- 0688- 1ach- 97ad- 08002b12h8f 8

$PERM SSI ON servi ce: i nterface: perm ssi on: nane: val ue

The $PERM SSI ON keyword is used to define a set of access controls to maintain control over the
interface. There are several ACL hit permissions that are recommended by OSF, listed in Table 5-7.
Additional powers of 2 may be used for application-specific permissions. In the examples, values 128 and
256 are extensions specific to the CALC example These values provide ACL management for theadd and
subt ract interface.

Per mission Name Value

r read 1
w write 2

e execute 4

c control 8

i insert 16

d delete 32

t test 64

Table 5-7: Recommended ACL Bit Permissions

The meaning for each parameter isas follows:
* service— A service entry (server application) from $IBCESERVI CE keyword

* interface — The name of an interface implemented by the server. This interface must match the
interface name defined in an IDL file.

e permission - A single character value used within ACL permission strings.

e name - A short title for the permission, used primarily as a comment.

« value - A numeric value for the permission. Must be a power of two. If possible, choose a permission
value from Table 5-7 but additional values may be used if necessary. The assignment of different
meanings to the values in this table is strongly discouraged.

The following are examples of entries in the Segl nf o file:

$PERM SSI ON CALCserver:cal cul ator:c:control : 8
$PERM SSI ON CALCserver:calcul ator:t:test: 64
$PERM SSI ON CALCserver: cal cul ator: a: add: 128
$PERM SSI ON CALCserver: cal cul ator: s: substract: 256

$RPCSECURI TY service:interface: security

The$RPCSECURI TY keyword specifies the protection levels supported. These levels identify how much
information in network messages is encrypted.

* service - is the name of the service implementing the interface (Sam&aSESERVI CE)
» interface - is the name of the interface (Same &bliNTERFACE)

Thesecurity parameter is composed of several fields:

aut henti cation type:[principle nane:protection |evel:authentication
servi ce: aut hori zati on service]

where

DIl COE I&RTS: Rev 3.0 July 1997 181

Segment Descriptors and Descriptor Files

authentication type is one of the following:

* none - Thistype hasno further information.
* dce - Thistypeisfollowed by the following fields:

e principle name

* protection level - one of the following values:

o default - Usesthedefault protection level for the specified authentication service.

* none - Thereisno protection level.

e connect - Performsauthentication only when aclient and server establish a
relationship (or connection). This level performs an encrypted handshake when the
client first communicates with the server. Encryption or decryption isnot performed
on the data sent between the client and server.

o call - Attachesa verifier to each client call and server response that protects the
system -level metadata of every RPC call (but not the application-level data). This
level does not apply to remote procedure calls made over a connection-based
protocol sequence.

* pkt - Ensuresthat all datareceived isfrom the expected client. Thislevel attaches a
verifier to each message.

* pktinteg - Inaddition to protecting metadata, ensures the integrity of the
application-level data (RPC call and return parameters) transferred between two
principals, that is, that none of it has been modified in transit.

* pktprivacy - Inaddition to protecting metadata and integrity, encrypts all
application-level data, thus guaranteeing its confidentiality.

* authentication service - one of the following:

o defaul t - DCE default authentication service.

* none - No authentication.

e secret - DCE shared-secret key authentication.

» authorization service - This is the process of checking a client’'s permissions to an object that
is controlled by the server. Access checking is entirely a server responsibility. Possible values
are:

» defaul t - No authorization information is provided to the server, usually because
the server does not perform access checking.

e name - Only the client principal name is provided to the server. The server can then
perform authorization based on the provided name.

* dce - The client’s credentials is provided to the server with each remote procedure
call that is made using the binding parameter.

Examples of th& RPCSECURI TY keyword are:

$RPCSECURI TY CALCserver: cal cul ator: dce: CALCserver: defaul t: defaul t:dce
$RPCSECURI TY CALCserver: cal cul ator: dce: CALCser ver: pkt privacy: secret: dce

$SERVERTHREADS ser vi ce: num t hr eads

This keyword defines the number of call threads that the DCE runtime creates in order to service incoming
RPC requests. Parameters are:

» sarvice - The name of the server application. This is the same value as foun$DOEBERVI CE

service field.
e num_threads - The number of threads allocated. If not specified the default is 5.

The following is an example:

[82 COE I&RTS: Rev 3.0 July 1997

Segment Descriptors and Descriptor Files

$SERVERTHREADS CALCserver: 5
$SERVI CEABI LI TY servi ce: code

This keyword identifies the serviceability message code for the application, as defined in the application
serviceability messages file. The serviceability messages fil e defines message text and audit message

numbers for use by the application. All serviceability messages contain a six-letter sequence identifying the
“technology” and “component” that generated the mes¥agetermine a three-letter lower case

component name for the application derived from the segment prefix (e.g., In the example used in this
subsectionCALCis the segment prefix so the “component” paddt). These three letters will appear on
every system-generated message from the application. Insert the component name in the freAMSBthe

file, as shown in the sample below. There are no differences in defining a SAMS file for a COE application
compared to any other DCE application.

Note: If using the sample application CALC. sans file as a template,
there are numerous places where the component name is used in
variable names by convention, and must be changed for a
different application.

Part |

This part defines the lowest-level table, the one that contains

all the messages (defined in the third part) in a
straight array.

component cal
tabl e cal _table
t echnol ogy dce

The DCE COE library functions make use of the OSF DCE 1.1 serviceability interfaces to generate and
manage error messages. The server management interface allows messages of different severity to be
turned on or off and routed to different locations (e.g. error log, stderr, etc.).

The parameters for this keyword are:

e service- is the name of the service (Same aBDEESERVI CE)

* code- This is a three-letter component used to identify serviceability message files and serviceability
messages for this server. It can be a number or lower case text.

The following is an example of a $SERVI CEABI LI TY keyword:

$SERVI CEABI LI TY CALCserver: cal
$UUI D service:interface: uuid version
This is the interface UUID. Each DCE interface has a unique identifier (UUID) to ensure compatibility of
the client and server. This UUID identifies a specific RPC interface. An interface UUID is declared in an

RPC interface definition (an IDL file) and is required element of the interface aSeghaf o file.

* service— A service entry (server application) from $8CESERVI CE entry

" Applications are supposed to be identified with the technalegyand an identifying number assigned
by the OSF. Until a block of humbers are assigned for COE applications, a unique component name
derived from the segment prefix should be used.

DIl COE I&RTS: Rev 3.0 July 1997 183

Segment Descriptors and Descriptor Files

* interface — The name of an interface implemented by the server. This interface must match the
interface name defined in an IDL file.

e uuidversion - The combined major and minor version numbers identify one generation of an interface.
Version numbers (1.0) allow multiple versions of an RPC interface to coexist. Strict rules govern valid
changes to an interface and determine whether different versions of an interface are compatible. The
offered and requested interface are compatible under the following conditions:

* The interface requested by the client and the interface offered by the server have the same
major version number

* The interface requested by the client has a minor version number less than or equal to that of
the interface offered by the server.

An example of th&UUI D keyword is:

$UUI D CALCserver: cal cul at or: 0073a028- f bdb- 1e53- 908e- 08002b13ca26 1.0

5.5.2.12 Direct

The segment descriptbr r ect allows a segment to issues special instructions to the installation tools. If
the segment is part of an aggregate, the directives belowappiy the segment in whoSegDescri p
subdirectory the directives appear.

$ACCTADD: execut abl e

This keyword informs the installation software that the spea#itedutable, in the segment’bi n

subdirectory, should be run each time a user account is added to the ¥estefry Seg will flag use of

this keyword as a warning to highlight that it is being used. Prior permission must be given by the Chief
Engineer before this keyword can be used.

$ACCTDEL: execut abl e

This keyword informs the installation software that the spea#ftedutable, in the segment’bi n

subdirectory, should be run each time a user account is deleted from the ¥gstefry Seg will flag use

of this keyword as a warning to highlight that it is being used. For security reasons, prior permission must
be given by the Chief Engineer before this keyword can be used.

$CMVDLI NE
Segments which provide a command-line access must insert this keyword in their segment.

$KEY: request: key

Several of the keywords presented here require authorization by the Chief EngineesKEYusust be
provided for each requested permissi@y.is the authorization key provided by the Chief Engineer.
request is an indication of the type of request being made. Requests are grouped by the type of request
being made (e.g., security-related, installation-related) and are one of the following values:

I NSTALL for permission to ruPost I nstal |, Prel nstal |, and
DEI NSTALL with root permission

ACCTS to use any of the account creation/deletion keywords (e.g., for
$ACCTDEL, $ACCTADD, $PROFADD, $PROFDEL, and
$PROFSW TCH)

CMDLI NE to use thesCVDLI NE keyword

SUPERUSER to use the&s SUPERUSER keyword

[84 COE I&RTS: Rev 3.0 July 1997

Segment Descriptors and Descriptor Files

A separate authorization key and $KEY entry isrequired for each request group, but the key applies to any
and all requests within that group.

$NOCOWPRESS

The Makel nst al | tool automatically compresses segments to reduce the amount of space required on
disk or tape, and to reduce the download time. The ingalation tools automatically decompress segments at
installation time. The $NOCOVMPRESS keyword indicates that compression is not to be performed.

$PROFADD: execut abl e

This keyword operates in the same fashion as $ACCTADD, except that it is used when profiles are added to
the system.

$PROFDEL: execut abl e

This keyword operatesin the same fashion as $ACCTDEL, except that it is used when profiles are added to
the system.

$PROFSW TCH: execut abl e

Thiskeyword is similar to $PROFADD except that the executable isrun whenever auser currently logged
in switches from one profile to another. The executable is not run when the user first logsin; it isrun only
when aprofile switch is made.

$READ ONLY

This keyword informs the installation software that the segment can be run from aread-only medium (e.g.,
CDROM). Thisimplies that the segment does not modify any files under itsinstallation directory.

$REBOOT

The presence of this keyword indicates that the installation software should automatically reboot the
computer after the segment isloaded. If several segments have been selected for loading a one time, the
reboot operation will not occur until all segments have been processed. The operator will be notified before
the reboot occurs and given the option to override thereboot directive.

$REMOTE[: XTERM | : CHARBI F]

This keyword indicates that the functions (all functions) provided by this segment can be executed

remotely. At ingdlation time, the installation software will note that this segment can be executed

remotely. If the XTERMattribute is present, it indicates that the segment can also be accessed via an

“xterm” capability, and output will be routed to the display surface pointed to by tBleL AY

environment variable setting. If ti#HARBI F attribute is present, it indicates that the segment supports a
character-based interfac@4ARBI F andXTERMwill normally be mutually exclusive.

By default, segments are assumed to be locally executable only.

DIl COE I&RTS: Rev 3.0 July 1997 185

Segment Descriptors and Descriptor Files

$ROCOT: Postlnstall | Prelnstall | DElI NSTALL

The presence of this keyword indicates that the specified descriptor must be run with root privileges. A
separate $ROOT entry isrequired for each descriptor. Ver i f ySeg will flag use of thiskeyword asa
warning to highlight that it is being used. For security reasons, prior permission must be given by the Chief
Engineer before this keyword can be used. $ROOT requires the $KEY keyword as well.

$SELF_CONTAI NED

This keyword informs the instal lation software that the segment remainsin its original condition after
installation, with all filesintact under the ingalation directory. It also informsthe installation software that
any changes made during ingtallation (e.g. in Pr el nst al | and Post I nst al |) do not have side effects
if run multiple times. Thisallows the instal lation software to use an installed version of this segment asthe
source medium for a subsequent installation on another machine.

$SUPERUSER

Segments which provide or require superuser privileges, viaa command-line or otherwise, must insert this
keyword in their segment. Note that the $KEY keyword must a so be used to verify that Chief Engineer
approval has been obtained.

$USES _UNI NSTALL

This keyword appliesto NT segments only. The segment installer software normally handles registration of
“uninstall” information for segments. However, some segments, particularly COTS segments, may already
do this themselves. In such cases, the segmashtuse theBUSES_UNI NSTALL keyword to indicate to

the segment installer that the segment itself is handling uninstall registration. When this keyword is present,
the segment installer does not perform any uninstall registration during installation. This keyword may only
be used for COTS segments or as authorized by the Chief Engineer.

5.5.2.13 FilesList

Fi | esLi st is a list of files and directories that make up the current segment. It is required for COTS
segments. For other segment types, it is useful for documenting community files modified or used by the
segment. The reason that this descriptor is required for COTS segments is that COTS products do not
usually conform to the DIl-mandated directory structure. Therefore, the location of files modified by or
contributed by the segment is not usually readily apparent.

Fi | esLi st may contain the following keywords:

$DI RS a list of directories which this segment adds to the system. All files in the directory
are assumed to belong to the segment.

$FI LES a list of files which this segment adds to the system.
$PATH a shortcut for specifying a pathname. Succee#iDigRS or $FI LES are relative

with respect to the path specified.
A keyword must precede any list so that it will be clear whether a directory or a file is intended.
As an example, assume a segment to be installed creates the following four subdirectories
/ h/ data/test/datal

/h/ dat a/test/ dat a2
/ h/ dat a/ opt / dat a3

[86 COE I&RTS: Rev 3.0 July 1997

Segment Descriptors and Descriptor Files

[usr/opt/tenp

and addsthreefiles (f 1, f 2, f 3) tothe/ et ¢ subdirectory. ThenthefileFi | esLi st could contain the
following entries:

$PATH: / h/ dat a
$DI RS
test/datal
test/dat a2
opt/ dat a3

$DI RS
[usr/opt/tenp
$PATH: / etc

$FI LES

f1

f2

f3

The $DI RS keyword before/ usr / opt / t enp isnot necessary, but is shown to illustrate that
Fi | esLi st may contain multiple occurrences of the keywords.

For COTS products, this descriptor must be used to list:

1. allfiles and directories the product adds that lie outside the segment’s assigned directory, and
2. any community file the COTS product modifies unless the modification is made by the COE
installation tools.

For example, assume a COTS segment adds a gat ©f ser vi ces through theCOESer vi ces
segment descriptor. Further, assume that the vendor provides a program that directly modifies the
/ et c/ gr oup file as part of the installation process. Thén esLi st must list/ et ¢/ gr oup but does
not need to includéet c/ ser vi ces because the installation tool modifies it as a result of the
CCESer vi ces descriptor.

5.5.2.14 Hardware

TheHar dwar e descriptor defines the computing resources required by the segment. Key@Bttiand
$MEMORY may appear only once; both are required for all segments, excepEMDRY may be omitted

for a data segmerDl SK and$PARTI Tl ON are mutually exclusive, but one must appear in the segment
descriptor$Dl SK may appear only once, BBPARTI TI ON may appear multiple time$OPSYS and
$TEMPSPACE are optional.

$CPU. pl atform | ALL

platformis one of the supported platform constants listed in subsection B8Gbt NE_CPU, or ALL. If
ALL is given, it indicates that the segment is hardware independent (e.g., a data segment). If platform is a
generic constant (e.g., HP or PC), it applies to all platforms of that class. Thus,

$CPU: PC

indicates that the software can be loaded on any PC, whether the PC is a 386, 486, or Pentium class
machine. However,

$CPU: PC386

DIl COE I&RTS: Rev 3.0 July 1997 187

Segment Descriptors and Descriptor Files

indicates that the software can be loaded on a 386 or better class platform. Similarly, HP712 indicates that
the software can be loaded on an HP712 or better class platform that is binary compatible with the HP712.

$DI SK: si ze[: reserve]

sizeis expressed in kilobytes and isthe size of the segment, including all of its subdirectories, at install
time. The COE tool Cal cSpace (see Appendix C) will compute the disk space occupied by a segment
and update this keyword. reserve is also expressed in kilobytes and is the additional amount of disk storage
to reserve for future segment growth.

SMEMORY: si ze
sizeisexpressed in kilobytes of Random Access Memory (RAM) required.

$OPSYS: operating system| ALL

operating systemis one of the supported platform constants listed in subsection 5.3 for MACHI NE_GCS, or
ALL. If ALL isgiven, it indicates that the segment is operating system independent. Dependencies on a
particular version of the operating system are defined in the Requi r es descriptor where a dependency on
a specific segment (e.g., operating system with a particular version) is described.

$PARTI Tl ON: di skname: si ze[: reserve]

This keyword allows segments to reserve space on multiple disk partitions. The installation software will
not split a segment across disk partitions, but the sesgment may do soinaPost | nst al | script. Use of
multiple disk partitionsis discouraged.

size and reserve have the same meanings as for $DI SK. For UNIX platforms, disknameis either an explicit
partition name (e.g., / home2) or an environment variable name of the form DI SK1, DI SK2, ... DI SK99.

The ingallation software will set the environment variables DI SK1, DI SK2, etc. to the absolute pathname
for where space has been alocated. These environment variables are defined for Pr el nst al | and

Post | nstal I, but not for DEI NSTALL. $PARTI Tl ON keywords are assumed to be in sequential order,
so that environment variable DI SK1 will refer to the first keyword encountered, DI SK2 to the second, etc.

For NT platforms, diskname must be a disk drive name. For example,

$PARTI Tl ON:"D:":2048
requests 2MB of space on the “D” disk drive.
For example, suppose a Tactical Decision Aid (TDA) is compiled to run on an HP, a Solaris, and an NT
platform. Assume for the HP it requires 512 K of memory, requires 1 Megabyte (MB) of disk storage for
the program and its data files, and will expand over time to a maximum of 4 MB. For Solaris, assume it

requires 576 K of memory, 1.5 MB for initial disk space, and will expand to 5 MB. For a PC, assume the
requirements are the same as for the Solaris machine. The Heogbrar e file is

[88 COE I&RTS: Rev 3.0 July 1997

Segment Descriptors and Descriptor Files

#i fdef HP
$CPU: HP
$DI SK: 1024: 3072
$MEMORY: 512
#elif SOL
$CPU. SOL
$DI SK: 1536: 3584
$MEMORY: 500
#elif PC & & NT
$CPU. PC486
$DI SK: 1536: 3584
$OPSYS: NT
$MEMORY: 571
#endi f

Note that this exampleindicates that the information described isthe same for all HP platforms, the same
for all Solaris platforms, but that it only appliesto PC486 or better machinesrunning Windows NT.

As another example, assume a data segment isto be allocated across three disk partitions. Further assume
that the firgt partition must be/ hone5 and requires 10 MB, but the remaining space required is 20 MB
each and can be on any available disk partition. The proper SPARTI T1 ON statements are:

$PARTI TI O\ / hone5: 10240
$PARTI TI O\ DI SK2: 20480
$PARTI TI O\ DI SK3: 20480

Assume that the installation software is able to allocate space on / hone5 asrequested, and that the
remainder of the space requested ison/ hone18. The ingallation software will set the following
environment variables:

set env DI SK1 / honeb
set env DI SK2 / honmel8
set env DI SK3 / honel8

$TEMPSPACE: si ze

Some segments may need temporary space during the ingallation process. The $TEMPSPACE keyword
requests that size kilobytes of disk space be allocated for temporary use during the installation process. If
space is available, theinstallation software sets the environment variable COE_TMPSPACE to the absolute
path where space was allocated. If space isnot available, an error message is displayed to the operator and
the segment installation fails The installation software automatically del etes the all ocated space when
segment ingallation is completed. Space isalocated prior to executing Pr el nst al | .

5.5.2.15 Help

This segment descriptor isa place holder for a future COE revision. Its purpose isto provide amechanism
for identifying and managing help files within the system. Segment devel opers should use this descriptor
now to reduce migration problems later.
As Figure 5-2 indicates, segment help files are located directly underneath the directory

SegDi r/ dat a/ Hel p

They arelisted individually in the Hel p segment descriptor and grouped according to their format. Help
fileformat isidentified by one of the following keywords:

DIl COE I&RTS: Rev 3.0 July 1997 189

Segment Descriptors and Descriptor Files

$HTML alist of help filesin HTML format.

$VAN alist of help filesin UNIX man page format.

$NVBHELP alist of help filesin Microsoft Help format (NT only).

$TEXT alist of help filesin plain ASCII text format (i.e., no graphics or special characters).
$OTHER alist of filesin aformat other than that identified by the preceding keywords.

The order in which these keywords islisted is not important and they may be repeated multiple times
within the segment descriptor. HTML isthe COE-standard format, but the other formats are provided to
assist legacy system migration.

For example, assume a segment containstwo HTML-format help files (HL and H2), UNIX man pages
(manl and man2), three ASCII text files (T1, T2, and T3), and one help filein an internal format (doc1).
Then the proper Hel p segment descriptor entries are;

[Hel p]
$HTML
H1

H2
$MAN
manl
man2
$TEXT
T1

T2

T3
$OTHER
docl

5.5.2.16 |lcons

Thel cons descriptor is used to define the icons that are to be made available on the desktop to launch
segment functions. The format of the descriptor isalist of files undernesth dat a/ | cons that defineicon
bitmaps and their associated executables. Refer to the Executive Manager APl documentation for a
description of the file format.

55.2.17 Menus

Use the Menus descriptor to list the names of menu files contained within the segment. Figure 5-2 shows
that segment menu files are located underneath dat a/ Menus. Refer to the Executive Manager AP
documentation for the menu file format.

For account groups, this descriptor is simply a list of the account group’s menu files. For other segments,
the format of each line is

menu file[:affected nenu file]
wheremenu fileis the name of a menu file underneath the segmeat's/ Menus subdirectory, and

affected menufile is the account group menu file to update. If multiple account groups are affected, as
listed in theSegNane descriptor, each affected account group is updated. If no affected menu file is listed,

[30 COE 1&RTS: Rev 3.0 July 1997

Segment Descriptors and Descriptor Files

then menu file is simply added to the list of menu files which comprise the account group’s menu
templates.

For example, suppose a segment cai®dl DA has four menu files in thaat a/ Menus subdirectory:
Syst em Mor eSt uf f, ASWIDA, andLoggi ng. Assume thaByst emis to be added to the affected
account group’$yst emmenu file, andvbr eSt uf f is to be added to the affected account group’s
Def aul t menu file. The proper entries are as follows:

System System
Mor eSt uf f : Def aul t
ASWIDA

Loggi ng
5.5.2.18 Network

TheNet wor k descriptor is used to describe network-related parameters. Use of this descriptor requires
prior approval by the DIl COE Chief Engineer and its use is restricted to COE-component segments, except
for DCE Servers which are not necessarily COE-component segivientd.y Seg will strictly fail any

segment that includes this descriptor unless it is a COE-component segment or it is a DCE server.

One or more entries may follow each keyword listed below.
$HOSTS

IP addresses and hostnames are generally established by a system or network administrator. Segments may
add IP addresses and host names as follows:

$HOSTS
LOCAL | REMOTE : 1P address: nane{:alias}

wherelP address, name, andalias are as defined for the UNIXet ¢/ host s file. If the IP address

specified already exists in the network hosts file, the name and alias entries are added as alias names. If
LOCAL is specified, the entry is made only to the local network hosts fRENDTE is specified, the entry

is applied to the NIS/NIS+ or Domain Name Service (DNS) servBENMOTE is specified but neither
NIS/NIS+ or DNS are installed, itilvdefault toLOCAL.

Segments should rarely need to directly add host table eneiesf y Seg will issue a warning for any
segment which adds host table entries.

$KEY: Net wor k: key

key is the authorization key given to the segment developer by the Chief Engineer. This entry is required
only once within the section, and it applies to all entries within the section.

$MOUNT (UNIX only)
The SMOUNT keyword is used to specify NFS mount points. The syntax is
host name: NFS nount point:target dir
wherehostname is the name of a platform on the netwddiS mount point is the file partition to mount,
andtarget dir is where to mount the requested partition on the local machine. If target dir does not exist on

the local machine, it will be created.

For example, the sequence

DIl COE I&RTS: Rev 3.0 July 1997 191

Segment Descriptors and Descriptor Files

$MOUNT
dbser ver : / home3/ USERS: / h/ USERS

will perform the UNIX equivalent of
mount dbserver:/ hone3/ USERS / h/ USERS

If the hostname specified is the same as thelocal machine, a mount is not performed. Instead, the NFS
mount point is made available for other platformsto mount. If amount is performed as a result of
processing this keyword, the system will automatically reboot the system after segment installation is
completed. It performs asif the $REBOOT keyword (seethe Di r ect descriptor) were encountered; that is,
the operator isnotified that areboot is required and given an option to override thereboot directive.

$NETMASK: mask

This keyword allows a COE-component segment to set the subnet mask to mask. This should rarely be
required since the netmask is normally established as part of the COE kerndl. If two COE-component
segments attempt to set the netmask, the last segment loaded succeeds.

$SERVERS

Most COE services are implemented as servers. This keyword allows a segment to list the non-DCE
servers, by symbolic name, that it contains. These servers are registered with the COE so that other
segments can obtain their location through the COEFi ndSer ver function (see Appendix C).

Note: Servers implemented through DCE functions should not use this
keyword. The DCESer ver Def descriptor should be used
instead.

Each name listed is added to a table maintained by the COE of all serversin the system. Thistableis used
by the System Administration software to allow a site administrator to indicate which platform actually
containsthe server. The name given is added as an aliasto the network host table for the platform that
containsthe server. If NISINIS+/DNS are being used, the alias is added to the NISNIS+/DNS-managed
host table. Otherwise, itisadded to/ et ¢/ host s.

For example, assume a COE-component segment contains two servers named mast er Tr k and

mast er Conmrs. Assume that this segment isloaded on two workstations: sys1 and gar | and. Some
servers are designed to recognize whether they are the master server or are a dave to amaster server
located el sewhere. For this reason, the COE must handle situations where the same segment isloaded on a
server and a client machine. Assume in this example that the segment operates as a master server on sysi,
but asadaveon gar | and.

The following statements identify the servers contained within this segment:

$SERVERS
mast er Trk
mast er Conms

When the segment isloaded, theinstallation software performs the following actions.

1. Addmaster Tr k and mast er Comrms to the COE-maintained ligt of serversif they are not already
there.

2. Checktoseeif mast er Tr k or mast er Corms aready exist in the network host table. If so,
processing is compl eted.

[92 COE I1&RTS: Rev 3.0 July 1997

Segment Descriptors and Descriptor Files

3. Otherwise, ask the operator if thisisthe server platform for mast er Tr k and mast er Conms.

4. If the operator answers “no” to the previous question, processing is complete.

5. Ifthe answer is “yes,” update the network host table to contsit er Tr k andnmast er Conmrs as
aliases for the machine being loaded.

Note that this approach does not require the sesyer]() to be loaded prior to the cliergdr | and).
Furthermore, the site administrator can later change the configuration becaesesghny information is
available to the System Administrator software. Also note that the segment does not require the actual
hostnames or IP addresses.

Hostnames are site-specific and cannot be predicted in advance. Therefore, the COE requires that segments
use meaningful symbolic names as illustrated here instead of making assumptions about a specific
hostname or naming convention.

5.5.2.19 Permissions

The Security Administrator software provides the ability to describe objects (files, data fields, executables,
etc.) which are to be protected from general access. This information is used to create profiles which limit
an operator’s ability to read or modify files. Applications may query the security software to determine the
access permissions granted to the current usePdhei ssi ons file is the mechanism by which

segments describe objects and what permissions to grant or deny for the objects.

This descriptor is a sequence of lines of the form:
obj ect nane: permni ssi on abbrevi ation: perm ssi on

object name is the item to be controllegermission is the type of access to grant or deny (add, delete, read,
etc.), andoermission abbreviation is a single character abbreviation for the permission.

Permission abbreviations specified for an account group must agree with all segments which become part
of the group. The following are reserved abbreviations and their meanings:

A - Add

D - Delete
E - Edit

P - Print

R - Read

V - View

X - Transmit

Segments may use additional abbreviations as required.

For example, suppose a segment generates reports that are to be protected. Permissions relevant to reports
are delete, print, read, and archive. The pr&eemi ssi ons file is:

Reports: D: Del ete: P: Print: R Read: Z: Archi ve
(Z is used to indicate archive permission in this example.)

If the Per mi ssi ons file is missing, the security software will report that no access permissions are to be
granted for the requested object.

DIl COE I&RTS: Rev 3.0 July 1997 193

Segment Descriptors and Descriptor Files

5.5.2.20 Processes

Usethe Pr ocesses descriptor to identify non-DCE background processes (see subsection 5.10.6). The
format of the descriptor is a keyword which identifies the type of process, followed by alist of processesto
launch in the form

process {paraneters}

where processis the name of the executable to launch, and parameters are optiona process-dependent
parameters. Output from the processis piped to/ dev/ nul | . For example, suppose Test Pr oc isa
background process which accepts two parameters, -t and - c. It will be launched in amanner equivalent
to

TestProc -t -¢c >& /dev/null &

Valid keywords to identify process type are:

$BOOT specify alist of processes to launch at boot time

$BACKGROUND specify alist of background processes

$PERI ODI C specify alist of background processes to run at some specified interval

$PRI VI LEGED specify a list of processes to run in privileged (i.e., “root”) mode
(available for UNIX only)

$RUN_ONCE specify a list of “one-shot” processes to run the next time the system is
started, but only the next time the system is started and never thereafter

$SESSI ON specify a list of login session processes

$SESSI ON EXI T specify a list of processes to run prior to terminating a login session

The$PERI ODI C keyword requires specification of the required interval, in hours. The format is
$PERI ODI C: hour s
wherehoursis a decimal value.

Executables are assumed to be in the segmaintisubdirectory. Th&PATH keyword can be used to
indicate a different location. The syntax for $@ATH keyword is

$PATH: pat hnane

wherepathname may be either a relative or an absolute pathname. If the pathname is relative, it is relative
to the segment’s home directory.

Use of boot-time, background, periodic, privileged, and “one shot” processes requires authorization by the
Chief Engineer. Therefore, tiBEY keyword must be specified once, in the form

$KEY: Processes: key
The authorization key applies to all requests withilfthecesses segment descriptor.

ThePr ocesses descriptor is a powerful capability the COE provides for managing application processes.
Refer to documentation in the Developer’s Toolkit for more detailed information on this descriptor.

Notee DCE processes are not described with the Processes
descriptor. Use the applicable DCE keywords within
DCESer ver Def and DCEC! i ent Def instead.

[34 COE I1&RTS: Rev 3.0 July 1997

Segment Descriptors and Descriptor Files

5.5.2.21 Registry (NT only)

The Regi st ry segment descriptor allows segmentsto add entries to the NT registry. It isfollowed by a

list of keys and filenames, underneath the segmdat'®/ Regi st r y subdirectory, whose contents are
the key values to add to the regisier i f ySeg will generate an error if any of the files listed do not
exist.

The parameters for this keyword are
keyloc:registry description file

wherekeyloc is the root location in the registry to add key values found in thefiigtry description file.
At presentkeyloc may have only the value

$HKEY_LOCAL_MACH NE\ SOFTWARE\ CCE.
Future revisions may expand tkeyloc parameter.
Consider the following example.

[Regi stry]
$HKEY_LOCAL_MACHI NE\ SOFTWARE\ COE: MyEntri es

This indicates that the segment contains a file navy&sht r i es located under the directory
SegDi r/ dat a/ Regi st ry (whereSegDir is the segment’s assigned directory). The contents of the file
M/Ent ri es will be added to the registry under the key

HKEY_LOCAL_MACHI NE\ SOFTWARE\ COE\ SegType\ SegDi r
whereSegType is the segment’s type aigdgDir is the segment’s assigned directory.
Following is the format of the registry description file:

$KEY: key- nane
$STRI NG Nane: St ri ngVal ue| $BlI NARY: Nane: Bi nar yVal ue| $DWORD: Nane: Daor dVal ue

wherekey-name is the name of the subkey to create beneath
keyl oc\ SegType\ SegDi r
* key-names may include ‘\'s to indicate that subkeys are to be created.

e The$STRI NG $BI NARY, and$DWORD keywords signify a string, binary or double-word name/value
pair that is to be maintained beneath the given key. The biaem follows the keyword and then the
value follows.

« At least oneBKEY must be specified in the registry description file. Mult®kEY's may be specified
in the registry description.

« All $STRI NG $BI NARY, and$DWORD settings must appear at the beginning of a line. These settings
are not required and if omitted the given key will be created without any name/value pairs. There may
be multiple$3STRI NG $BI NARY, and$DWORD settings pe$KEY and the order in which they are
listed is not important.

DIl COE I&RTS: Rev 3.0 July 1997 195

Segment Descriptors and Descriptor Files

The following exampleisfor a software segment whose segment directory is SegA. Assumethat key
valuesarein thefileset t i ngs. dat located undernesth the directory SegA/ dat a/ Regi stry. The
proper Regi st ry descriptor entry is

[Regi stry]
$HKEY_LOCAL_MACH NE\ SOFTWARE\ CCE: set ti ngs. dat

The following are example entriesfor set t i ngs. dat :

$KEY: Anal yze

$STRI NG Control Fil e:\ Program Anal yze\ Contr ol . dat
$DWORD: UsageCount : 0

$KEY: Def r agnent

$STRI NG Control Fi |l e:\ Program Def ragnent\ Contr ol . dat
$DWORD: UsageCount : 0

$KEY: Reporting

$STRI NG Control Fil e:\ Program Report\ Control . dat
$STRI NG Exanpl el: Cal I sign is Foxtrot Tango 3
$STRI NGExample2:Response is “Spring time 3!”
$DWORD:UsageCount:21

$BINARY:Encoding:17

Here are several keys with no name/value pairs that also

illustrates creating subkeys

$KEY:Reporting\Typel

$KEY:Reporting\Type2

$KEY:Reporting\Type3

The above example creates the following registry entries:

\HKEY_LOCAL_MACHINE\SOFTWARE\COE\Software\SegA\Analyze
\HKEY_LOCAL_MACHINE\SOFTWARE\COE\Software\SegA\Defragment
\HKEY_LOCAL_MACHINE\SOFTWARE\COE\Software\SegA\Reporting
\HKEY_LOCAL_MACHINE\SOFTWARE\COE\Software\SegA\Reporting\Type1l
\HKEY_LOCAL_MACHINE\SOFTWARE\COE\Software\SegA\Reporting\Type2
\HKEY_LOCAL_MACHINE\SOFTWARE\COE\Software\SegA\Reporting\Type3

Note that the values given for both the SDWORBNd $BINARY parameters are given in decimal format, but
will appear in hexadecimal format ($DWORaNd binary format ($BINARY) when viewed from the NT
registry editor window.

The registry capability must be used with great care.

e Theingaller toolswill remove registry entries added with this segment descriptor when the segment is
deleted.

e Segment developers shal not create root keys.

5.5.2.22 RegrdScripts (UNIX only)

Usethe ReqrdScripts descriptor to define the files that establish the runtime environment (account
group segment types) or to define filesto extend the runtime environment (all other segment types). For
account group segments, the syntax is one or morelines of the form:

script name:C | L

[36 COE I1&RTS: Rev 3.0 July 1997

Segment Descriptors and Descriptor Files

where C meansto copy and L meansto create a symbolic link. Thisflag is used when login accounts are

created to either copy environment files to the user’s login directory or to create a symbolic link. There can
be a maximum of 32 scripts. A script name is restricted to a maximum length of 32 characters.

For example, th®eqr dScr i pt s file for the System Administrator account group is

.cshrc: C
.login:C

The descriptor format for segment types other than account group is slightly different:

scri pt nane:env ext nane

wherescript name is the name of a script in the affected account grdbprs pt s subdirectory anénv
ext name is the name of an environment extension file in the present segi8ent’'pt s subdirectory.

For example, assume a segment loaded underfst Seg with a segment prefiXST is to be added to the
System Administrator application and it requires extending tisér c file. The propeiReqr dScri pt s
entry is:

.cshrc:.cshrc. TST
The installation tools will insert the statements
if (-e /h/TstSeg/ Scripts/.cshrc.TST) then

source /h/ Tst Seg/ Scri pts/.cshrc. TST
endi f

into the file/ h/ Acct G ps/ SysAdni Scri pt s/ . cshrc. When the segmefiist Seg is deleted, the
installation tools will remove these statements.

Refer to documentation in the Developer’s Toolkit for more information.

5.5.2.23 Requires

Segment dependencies are stated througRehai r es descriptor. The format is:

[$HOVE_DI R: pat hnane]
[$LIB:library nane[:library path]]
segnent nane: prefix: hone dir:[version{:patch}]

Segments will not be loaded until all segments they depend upon are loaded. For this reason, the parent
segment for an aggregate moat list child segments in thigequi r es descriptor.

Note: The parent segment for a child does not need to be listed in the
child’s Requi r es descriptor. By virtue of naming the aggregate
parent inSegNane, there is an implied dependency.

The optional $HOVE_DI Rkeyword is used in stuations where a segment must be loaded onto the disk in a
particular place. This technique should be avoided.

The optional $LI B keyword is used to identify a dependency on shared libraries. library name describes
the shared library or Dynamic Link Library (DLL) on which the segment is dependent. The shared fileis

DIl COE I&RTS: Rev 3.0 July 1997 197

Segment Descriptors and Descriptor Files

normally located in the dependent segmelit’a directory; howeverlibrary path can be used to define a
different path for the shared file.

For example, assume the segmEBEET must be installed in the directatryhonme3/ t np/ TEST, it
requires version 3.0.2 of segm@&eatgA with patches P1 and P4, and also requesgB version 5.1.1. The
Requi r es descriptor is

$HOVE_DI R: / hone3/ t mp/ TEST
SegA Name: SEGA: / h/ SegA: 3. 0. 2: P1: P4
SegB Name: SEGB: / h/ SegB: 5.1. 1

In some cases, it may be possible that a segment dependency can be fulfilled by one or more segments.
This is indicated by bracketing such segments with braces and using the k§@Rdrdtween acceptable
alternatives.

As an example, suppose the segnT&8T above has a dependency that caratisfied bySegA or the
combination ofSegB andSegC. The propeRequi r es descriptor is

$HOVE_ DI R / hone3/ t np/ TEST

SegA Nane: SEGA: / h/ SegA
$OR

SegB Nane: SEGB: / h/ SegB

SegC Nane: SEGC: / h/ SegC

}

Multiple bracketed alternatives may appear in the same descriptor.

5.5.2.24 Security

TheSecuri ty descriptor is of the following form
classification{:caveat}

whereclassification indicates the highest classification level for the segmdMdEI(ASS,

CONFI DENTI AL, SECRET, TOP SECRET). The optional list otaveatsis used to document releasability
restrictions. If the segment contains items with multiple classification levels, the highest classification level
must be specified. If the segment has multiple releasability restrictions, the most restrictive ones should be
listed as caveats.

Note: This descriptor is required and its purpose is primarily for
documentation. Caveats are not used for any other purpose but
the classification is used by the installation tools to determine
whether or not a segment should be loaded onto a platform. The
segment’s classification level is compared against the platform’s
current classification level (as displayed in the security banner)
and is not loaded unless the platform level dominates the
segment classification level. This featurena to be considered
a trusted capability but is merely provided as an aid to the
installer. The classification and caveat mogitbe confused with
data labeling or other security features provided by trusted
systems.

[98 COE I1&RTS: Rev 3.0 July 1997

Segment Descriptors and Descriptor Files

5.5.2.25 SharedFile

This segment descriptor handlesinstallation of NT shared DLLs and UNIX shared libraries. It isfollowed
by alist of filenamesthat are the names of the shared libraries (UNIX) or DLLs. They must be located in
the segment’di n subdirectory, which is the DIl-compliant location for shared fl&s.i f ySeg issues
an error message if a filename listed does not exist under the segmengsbdirectory. Shared files
must use the segment prefix naming convention to assure that the names are unique.

The Shar edFi | e descriptor accepts two keywords:l LENAVE which is required anfiPATH which is
optional. The format for each follows.

$FI LENAMVE: f i | enane
This keyword establishes the shared library or DLL filename (parafrietemme).
$PATH: pat hnane

This is an optional keyword which provides the directory pathname of the file when it is not located in
the segment’di n directory.

Note: The path is very important in a UNIX environment as the shared
library must be placed in the same location as when the
executable binary was created; otherwise, the binary will not
execute.

At installation time, the segment installer copies the shared file to the direbfoB0E/ Shar ed, deletes

the shared file from the segmernitisn subdirectory, and then creates a symbolic link from

/ h/ COE/ Shar ed to the original location. This is done so that the search path for finding shared files does
not need to include any entry other thidn COE/ Shar ed. Segments which have a dependency upon the
shared file must identify the segment which provides the shared file iRethe r es segment descriptor.

Installation requires special care to ensure that a segment which provides a shared library/DLL is not
removed when there are segments still installed that require it. For this reason, the installer maintains a
usage counter for the shared file. When the segment which “owns” it is installed, the count is set to 1. As
segments which depend upon it are installed or removed, the counter is incremented or decremented as
appropriate. The installation tools thus prevent the “owning” segment from being removed until the usage
count indicates there are no more dependent segments installed.

Shared libraries/DLLs require specific consideration within the COE.

* Segments must state dependencies on the segment providing the shared library/DLL, not the actual file
itself.

« One segment may not update a shared library/DLL “owned” by another segment. This would
otherwise contradict the fundament COE principle that objects (resources, files, etc.) may be modified
only by the segment which owns the object, or by the COE.

DIl COE I&RTS: Rev 3.0 July 1997 199

Segment I nstallation

5.6 Segment | nstallation

Segment ingtal ation requires some form of el ectronic media (tape, CDROM, disk, etc.) that containsthe
segments, and that has a table of contents which liststhe available segments. Makel nst al | isthetool
which creates such e ectronic media. However, it isimportant to identify the operations (e.g., compression)
performed on segments and the sequence in which these operations are performed.

Ingallation requires reading the table of contents created by Makel nst al | , selecting the segments or
Configuration Definitions to install, and then copying the segments to disk. Segments may actively
participate in theinstallation process through Post | nst al | , Prel nst al | , and DEI NSTALL scripts.
This subsection details both the Makel nst al | tool and the ingalation sequence. At the end of this
subsection, detailed information on database creation and deinstallation is presented.

5.6.1 Makelnstall Flowchart

Figure 5-14 shows the sequence of operations performed by the Makel nst al | toal.

1 Makel nst al | isgiven alist of segmentsthat are to be processed. For each segment in thelist:
a) If the segment isnot already on disk, it is extracted from the repository and placed in a
temporary location.
b) A check is madeto ensure that the segment isavalid segment.
C) If the segment isinvalid, an error message is displayed. If the segment was checked out

of therepository and placed in atemporary location, the temporary segment is del eted.
Makel nst al | then terminates.

2. If all segmentsare valid, aworklist iscreated. The worklist is sorted to ensure that segments
which have dependencies appear in the list after the segments they depend upon. This ensures that
at install time atape will not have to be rewound because of segment dependencies. Note that
specification of an aggregate automatically includes each child. The order in which child segments
are placed onto the digtribution mediais not guaranteed but is normally the order in which they are
specified by the parent segment.

3. For al segmentsin the workligt:
a) Prepare the segment by executing the segmenéd/hakel nst descriptor if it exists.
Pr eMakel nst is prevented from modifying the segmersgDescri p. Otherwise,
Pr eMakel nst could invalidate the segment validation step above.

b) Unless the segment specifies otherwise, all segment subdirectoriesSegbBpscri p
are compressed.

c) The compressed segment and its descriptor directory are written out to the specified
electronic media.

d) If the segment was extracted from the repository and placed in a temporary location, the

temporary segment is deleted.

P00 COE 1&RTS: Rev 3.0 July 1997

Segment I nstallation

Qeer)

For All Issue Error
Segs Requested Message
Extract Order F
Segment Worklist Delete
Seg?
T
Delete Seg

For All
Segsin Worklist
Prepare Seg

Y

Compress Seg

Y

Write out Seg

Delete
Seg?

Delete Seg

Figure5-14: Makel nstall Flowchart

DIl COE I&RTS: Rev 3.0 July 1997

201

Segment I nstallation

5.6.2 Installation Flowchart

Figure 5-15 isadetailed flowchart for the segment ingtalation process. The sequence of Pr el nst al |,
Post I nst al |, and DEI NSTALL executionsis the most significant aspect of the flowchart. Directives
containedinthe Di r ect descriptor may affect the sequence (e.g., use of SREBOOT and $ROOT
keywords), but such details are omitted for clarity. The installation software automatically removes patches
when a segment isreplaced and del etes any temporary space ($TEMPSPACE keyword) all ocated for the
segment. These detail s are also omitted for clarity.

1

A load deviceis selected (tape, disk, etc.) and the table of contents created by Makel nst al | is
read.

Segments found in the table of contents which do not match the target platform are removed from
consideration. Similarly, a check is made to ensure that an operator cannot inadvertently load a
segment for which heisnot authorized. The environment variables MACHI NE_CPU and

MACHI NE_CS are set to indicate the hardware platform.

The media may have Configuration Definitions defined. If they are defined:

a) The operator may select a Configuration Definition to |oad.

b) If acustom instalation is desired, the operator is presented with the table of contentsin
which al segmentsin the selected Configuration Definition are highlighted. The operator
may add or delete segmentsfrom thislist.

C) If Configuration Definitions are not defined, the operator is shown the table of contents
and must manually select the desired segments.

For all segments selected, a check is made to seeif the segment isloadable. To be loadable, all
dependent segments must either be selected or aready on disk. Conflicting segments must not be
selected, nor may they already have been loaded on disk.

For al segments selected:

a) The ingallation tools determine where to load the segment. The environment variable
I NSTALL_DI Ris set to the absolute pathname to where the segment will be loaded.
Segments can not assume that any environment variables other than MACHI NE_CPU,
MACHI NE_GS, SYSTEM ROOT (for NT only), | NSTALL_DI R, and those set to refer to
disk space (COE_TMPSPACE, DI SK1, etc.) are defined.

b) If an old version of the segment already exists on disk, the old segmEhNSTAL L
script is run.

C) The new segmentBr el nst al | script is loaded and executed. Note that the new
segment isot yet on disk.

d) The old segment is deinstalled by the installation tools. Modifications made through the
descriptor files are reversed.

e) The old segment is deleted from disk.

f) The new segment is loaded from tape onto disk and decompressed if necessary.

Q) The installation tools process commands from the new segment’s descriptor files.

h) The new segmentRost | nst al | script is runPost | nst al | may invoke runtime
tools described in Appendix C (e.g., to prompt the user).

i) A status message is displayed indicating whether or not the segment was successfully
installed.

If any of the segments installed requested a reboot, the operator is notified and asked for
confirmation. If the operator confirms, the system is rebooted.

P02 COE I&RTS: Rev 3.0 July 1997

Segment I nstallation

5.6.3 Database | nstallation and Removal

Within the overall installation and removal flowchart presented in Figure 5-15, there are some special
considerations with regards to handling SHADE databases. Database installation is described first, then
database deingtallation.

5.6.3.1 Database I nstallation

This subsection describes the installation process flow and how the database segment components work
together to install a data store on the COE database server. Post | nst al | , automatically invoked by
CCEl nst al | er, drivesthe actual ingtallation and creation of the database and its storage by executing
the scriptsresiding under theinstall directory of a database segment. The flowchart in Figure 5-16 depicts
the processlogic of aPost I nst al | filewith regards to database segments.

The DBMS should be operating in its maintenance mode (e.g. Oracle’s corSiaRtIUP DBA

EXCLUSI VE) when a database segment or database patch segment is installed. This prevents users from
accessing data objects during their creation and possibly corrupting either the segment or the database
instance.

Table 5-8 shows, in broad outline, the sequence of steps performed by a database server segment when it is
creating the database. It uses Oracle and Sybase as examples. The first three steps must be performed by a
database account with DBA privileges. The owner account (and there may be more than one) should be
restricted so it can only create objects in the data stores designated for its use. The remaining steps should
be performed by the owning account and should be done without DBA privileges. This ensures that data
objects are not inadvertently created in data stores belonging to other databases.

DIl COE I&RTS: Rev 3.0 July 1997 203

Segment I nstallation

| Select Load Device |

| Read TOC & SegDescrips |

Reduce list by
H/W & Security

For All
Segs Selected

| Run old DEINSTALL |

| Run new Prel nstall |

Y

| Deinstall old Segment |

| Delete old Segment |

| Copy new Segment to disk |

| Decompr ess new Segment |

| I nstall new Segment |

Y

| Run new PostI nstall |

| Display Status Report |

Figure 5-15: Installation Flowchart

Reboot
if
Requested

P04 COE I1&RTS: Rev 3.0

July 1997

Segment I nstallation

Set up Installation
Environment

Y

COEPromptPasswd

Is

COEStartDBSer ver

Appropriate
DBMS
Instance

Start appropriate DBM S
instance in Maintenance M ode

Running?

Y

Execute
Installation Script

Figure 5-16: PostInstall Logic for DB Install

DIl COE I&RTS: Rev 3.0 July 1997

205

Segment I nstallation

Function User Oracle SQL Command Sybase SQL Command

1. Allocate Storage DBA createtablespace ... datafile... | create database...

2. Create Owner DBA create user ...

3. Create Role(s) DBA | createrole ... create group ...

4. Create Database Owner create schema create table ...

5. Load Data Owner insert into table insert into table

6. Create Constraints Owner alter table ... add constrainf create constraint ...

7. Grant Access Owner grant... on table ... to role grant ... on table ... to gropp
8. Disconnect Ownej DBA revoke CONNECT from ...

Table 5-8: Application Database Creation

1. Allocate Storage. This step is performed by the DBA and creates the physical storage needed for the
database. Developers shall not assume any particular disk configuration when creating data files and
shall create all files in the segmenDBS f i | es subdirectory. Developers may create multiple
storage areas (e.g., Oracle tablespaces or Sybase segments) to separate different groups of data objects.
Developers shall not modify the core database storage areas.

2. Create Database Owner. This step is performed by the DBA and creates the account or accounts that
will own the data objects. Theiceess will be limited to the storage areas created by the segment and
to public storage areas (e.g. Oracle tablesp&b# or USERS). Owners shall not have access to
system storage areas (e.g. Oracle tablespaS&EM. No permanent objects shall be created in public
storage areas by database segments. No objects shall be created in system storage areas. Owners shall
not have database administrator privileges.

3. Create Database Roles. This step is performed by the DBA and creates the database roles necessary
to manage user access. Developers should match the role definitions to the access needed by
applications. Developers should not grant privileges that allow users to manipulate the data objects’
structure (e.g. OracleAl t er privilege). Users should not be allowed to create their own indexes
either.

4. Create Database. This step is performed by the Owner and creates tables, views, indexes, constraints,
sequences, and any other data objects that are part of the database. If the developer has defined
multiple owners, a separate script should be provided for each one. No objects will be created that will
be owned by the DBMS default accounts (Orack&’S or SYSTEM Sybase’sa) or by any other
account intended to be a DBA. Creation of constraints and indexes may be deferred to speed the data
load.

5. Load Data. This step is performed by the Owner and fills the data objects previously created.
Although index and constraint creation were defined as occurring in the previous step, developers may
defer them until the data load is complete to improve performance.

6. Create Congraints. This step is performed by the Owner and creates any indexes, constraints,
triggers, or other objects that are part of the database but whose creation was deferred until after the
data load.

7. Assign Grants. This step is performed by the Owner and grants the appropriate access permissions on
data objects to the database roles previously defined. Grants shall not be made directly to users
accounts. Grants shall not be made to general purpose users (e.g. GtRilé’'€ user). Only the

P06 COE I1&RTS: Rev 3.0 July 1997

Segment I nstallation

owner or the DBA are allowed to administer grants. Other users will not be given permissions to
further disseminate grants.

8. Disconnect Owner. The last step — revoking database connection privileges from the owner upon
completion of the load process — is performed by the DBA. It ensures that users cannot connect to the
database as the owner of the data and thereby prevents users from modifying schemas, indexes, or
grants. Developers shall also require the database administrators to change the password of the owner
account upon completion of the database creation.

The flowchart in Figure 5-17 depicts the processing logic of tisg al | directory’s scripts which drive

the creation of the database objects. Each pacdkagieal | script executes the database definition scripts
that connect to the COE Database Server to create database objects and perform other data definition
functions.

The packagénst al | script executes database definition scripts that actually connect to the COE DBMS
Server to create the database objects and perform other data definition functions.

5.6.3.2 Database Segment Deinstall

Deinstallation has a different flavor with databases. First, databases are dynamic. As users make changes to
their databases, sites’ data sets will diverge from each other. It is unlikely that any two operational sites will
have exactly the same data at any point in time. Second, inter-database dependencies restrict the ability to
remove segments in a modular way.

However, developers need to provide the capability to remove the application’s server segment from the
Database Server. This means removing the database and all traces of its presence from within the DBMS
and removing all files from the Database Server. The following steps, at a minimum, must be

accomplished. Note that the remove storage step de-assigns the data files from the DBMS, it does not
actually remove them from disk. The last step, remove files, is executed from the operating system to delete
the data files. Table 5-9 illustrates the logic required, using Oracle as an example.

DIl COE I&RTS: Rev 3.0 July 1997 207

Segment I nstallation

Check Existence Executed by DBA
of DB Scripts

Create Data Storage

Y

Y Create Database Owner

Y

Create Database Roles

Executed by DBO Y

Create Database

Y Y

Report Error L oad Data

Y

Assign Grants

<
Y

Disconnect Owner Executed by DBA

Figure 5-17: Install ScriptsLogic

Function User Oracle SQL Command
Removeroles DBA droprole...

Remove objects owner drop schema....

Remove storage DBA drop tablespace ...
Remove owner DBA drop user ...

Remove files DBA N/A (Use OS commands)

Table 5-9: Application Database Deinstall

P08 COE I&RTS: Rev 3.0 July 1997

Segment I nstallation

Within the Oracle server, combining theremoval of storage and of data objects by using the Oracle
command ‘drop tablespagencluding contents’ is not recommended because it tends to overload the
DBMS' rollback segments. Developers should use the ‘drop schema’ command followed by a ‘drop
tablespace’ command instead.

WhenDElI NSTALL is being executed to support a segment upgrade or patch, the upgrade or patch must
support the deinstall/reinstall of data and supply the scripts to do so.

DEI NSTALL scripts must be set up to fail nondestructively if other database segments are dependent on the
segment to be deinstalled. This can usually be accomplished using the CAEHlost DBDepends.

DIl COE I&RTS: Rev 3.0 July 1997 209

Partial Segmentation for COTS Products

5.7 Partial Segmentation for COTS Products

The segmentation process has several benefits, including the ability to state dependencies of one segment
on another, which significantly simplify the installation process. From a macro perspective, the
segmentation process is a matter of creating the appropriate segment descriptors to describe the segment
and then running the Makel nst al | tool to package the segment along with its segment descriptors.
However, there are situations in which it isnot convenient to physically repackage the application in order
to put it into segment format. Thisis particularly true with large COTS products which are digtributed on
media such as CDROM or in aformat provided by the vendor.

The DIl COE provides a mechanism, called partial segmentation, which allows use of the COTS vendor’s
original distribution media and scheme while yet retaining the advantages of using segment descriptors to
specify dependencies, identify conflicts, etc. In concept, the approach is to load a “pseudo-segment” which
contains only the segment descriptors and use the vendor’s installation process for the software itself. This
allows the installation tools to verify that sufficient space exists, that dependencies are met, and that
conflicts are resolved prior to loading the application.

Partial segmentation for COTS products requires that several actions be performed to ensure that it works
properly.

1.

A “pseudo-segment” must be created. This is done by creating a directory with the required
segment descriptors which will give the segment a name, prefix, version number, etc. This must be
registered as is any other segment. The version number for the “pseudo-segment” must include a
primary version humber that is used to track changes in the pseudo-segment and a secondary
version number that is the COTS product’s version number as provided by the vendor.

A Prel nstal | descriptor must be created which checks to see if a correct version of the COTS
product is already installed. If it is not, tReel nst al | must notify the user that the COTS

product must be installed before continuing and thetled nst al | descriptor must return a

failure status to the installer tool. This requires the operator to use the vendor supplied instructions
to install the product before continuing.

Developers who use the partial segmentation process must certifyMer shan Description

Document delivered to the government that the installation will fail if the “wrong” version of the
COTS product is installed. That is, if the pseudo-segment has been produced for version 3.2.1 of a
COTS product but the user installs version 3.1.5 then this error must be detected by the

Prel nst al I descriptor and handled accordingly.

Developers who use the partial segmentation process must provide a copy of the COTS product
for testing and must make it clear how testers should process the copy to make it ready for
installation.

The toolCOEScanCOT S described in Appendix C is a slight variation on the partial segmentation process.
It is specially designed for use in the NT environment where COTS products may have already been
installed on the platform prior to the installation of the COE. This tool creates segment descriptor
information for applications already installed and thus allows segments loaded subsequently to state
dependencies on COTS products already installed.

Note: Partial segmentation is supported but it is not normally the
recommended approach for COTS products. Complete
segmentation allows one to take full advantage of the benefits of
the segmentation concept and process. Use of the partial
segmentation approach requires prior approval by the cognizant
DOD system engineer.

P10 COE 1&RTS: Rev 3.0 July 1997

Security Considerations

5.8 Security Considerations

COE-based systems typically operate in a classified environment. Therefore, the COE and the segment
developer both must address security considerations. This section describes the security implications from a
runtime environment perspective. It does not address procedural issues such as proper labeling of eectronic
media, requirements for maintaining paper trails showing originating authority, etc.

Certain restrictions described bel ow are aresult of how the operating system manages file versus directory
permissions. The most specific permission (i.e, on afile) does not cons stently override the least specific
permission (i.e., on the file’s parent directory).

This section is evolving as security policies are developed for COE-based systems and as legacy systems
migrate to the COE. Further guidance will be issued as appropriate. Refer to the DIl COE Chief Engineer
for specific security concerns or for guidance in segment development beyond the information contained
here.

5.8.1 Segment Packaging

Segments shall not mix classification levels within the same segment. It is permissible to create an
aggregate that contains segments that are at different classification levels, but the parent segment must
dominate the security level of any child segments.

Features that are not releasable to foreign nationals shall be clearly identified through documents submitted
to the cognizant DOD SSA when the segment is delivered. Software and data that contain non-releasable
features shall be constructed so that the features may be removed as separate segments.

All classified data shall be constructed as separate segments. Developers shall submit unclassified sample
data to the SSA in a separate segment for the SSA to use during the testing process.

5.8.2 Classification Identification

All segments shall identify the segment’s highest classification level in the Security descriptor. Developers
shall submit documentation to the SSA that clearly identifies what features are classified and at what
classification level.

5.8.3 Auditing

Segments that write audit information to the security audit log shall include the segment prefix in the
output. This is required so that audit information can be traced to a specific segment.

5.8.4 Discretionary Access Controls

Developers shall construct their segments so that individual menu items and icons can be profiled through
use of COE profiling software. The profiling software allows a site administrator to limit an individual
operator’s access to segment functions by menu item and by icon.

5.8.5 Command-Line Access

It is highly desirable for segments not to provide an xterm window or other access to a command-line.
Segment features should be designed and implemented in such a way that operators are not required to
interact with the application or operating system by entering commands in a command-line environment.
Operators should interact with applications and the operating environment through graphical user
interfaces.

DIl COE I&RTS: Rev 3.0 July 1997 211

Security Considerations

Situations requiring superuser (i.e., root) command-line access shall require the operator tolog in asa
normal user then use the su command (for UNIX) to become a superuser. Superuser access by other means
isnot permitted unless the DIl COE Chief Engineer grants prior authorization. Permission will be granted
only for COE-component segments.
Segmentsthat provide command-line access shall audit entry to and exit from the command-line access
mode. Entry to command-line access mode shall require execution of the system login process so that the
user isrequired to enter a password. For example, the UNIX command

xterm -exec | ogin
will create an xterm window that requires the operator to provide alogin account and password.

Segments which require command-line access shall usethe $CVDLI NE keyword (and the required $KEY

keyword) in the Direct segment descriptor to document that the segment provides command-line access. If
the segment provides superuser privileges, the $SUPERUSER keyword must also be stated inthe Di r ect

segment descriptor.

5.8.6 Privileged Processes

Segments shall minimize use of privileged processes (e.g., processes owned by root or executed with an
effective root user id). In all cases, privileged processes shall terminate as soon as the task is compl eted.
Privileged processes require prior Chief Engineer approval.

(UNIX) The names of the privileged processes must be listed inthe Pr ocesses segment descriptor with
the $PRI VI LEGED keyword. The $KEY keyword must also be used to indicate that authorization has been
granted by the Chief Engineer.

(UNIX) Shell scriptsthat SUI D or SG Dtoroot are strictly forbidden.

5.8.7 Installation Considerations

Segments shall not require Post I nst al |, Prel nstal |, or DEI NSTALL to run with root privileges
unless permission to do so is granted by the Chief Engineer.

Segments shall not ater the UNIX umask setting established by the COE.

5.8.8 File Permissions
Segments shall satisfy at |east one of the following two requirements

1. The segment contains only subdirectories directly underneath the segment’s home directory. All files
are at least one level down from the segment’s home directory.

2. The segment has no directories or files that have the equivalent of the UNIX 777 file permissions.
This requirement is an attempt to provide a reasonable balance between security requirements and
migration of legacy systems. The main issue is that files and directories should have read/write/execute

permissions set for authorized, and only authorized, users.

Segments shall not place any temporary files in the directory pointeditd?hy R unless deletion,
alteration, or examination of such files by another segment or user poses no security concerns.

P12 COE 1&RTS: Rev 3.0 July 1997

Security Considerations

5.8.9 Data Directories

Segmentswhich contain data items with mixed permissions (e.g., some are read-only, some are write only,

some are read/write) shall be split into separate directories underneath the sedpmenssbdirectory

(for reasons explained in section 5.8). File permissions on the separate directories shall be set to prevent
unauthorized access to data files. No file shall be “world writeable” (i.e., writeable by any user) unless
authorized by the Chief Engineer.

DIl COE I&RTS: Rev 3.0 July 1997 213

Database Consider ations

5.9 Database Consider ations

COE-based systems commonly make extensive use of databases. Database considerations are therefore of
paramount importance in properly architecting and building a system. This section provides more detailed
technicd information on properly designing databases and database applications.

5.9.1 Database Segmentation Principles

A COE database server isa COTS DBMS product. It is used in common by multiple applications. Itisa
services segment and part of the COE. However, different Stes need varying combinations of applications
and databases. Asaresult, databases associated with applications cannot be included in the DBMS services
segment. Instead, these component databases are provided in a database segment established by the
developer. The applications themselves arein a software segment, also established by the devel oper, but
Separate from the database segment. If the datafill for the database contains classified data or is particularly
large, that data fill must bein a separate data segment associated with the database segment.

5.9.1.1 Database Segments

The DBMSis provided as one or more COT S segments. These segments contain the DBM S executabl es,
the core database configuration, database administration utilities, DBMS network executables (both server
and client), and development tool s provided by the DBM S vendor. Databases are provided as database
segments. These segments contain the executables and scripts to create a database and tools to load data
into the database.

The following functional groupings are used to provide database services. The configuration of COTS
segments that provide them may vary depending on the DBM S and the specific configuration chosen. The
COTS segmentswill usually be provided asa COTS DBMS server segment and a COTS DBMS client
segment, installed on the database server platform and on the client platforms, respectively. Specific
implementations of COTS DBM S segments are discussed in Appendix F.

1. DBMS Server. This functional group provides the DBMS executables, the DBMS’s network services
executables, and the core database. Its components are usually part of the DBMS server segment.

2. DBMSTooals. This functional group provides the executables for other DBMS applications (e.qg.
Oracle*Forms development tools). Its components are usually part of the DBMS server segment.

3. DBMSDBA Todls. This functional group provides the executables for tools used by database
administrators (e.g. Oracle’s ServerManager). Its components are usually part of the DBMS server
segment, but may also be incorporated in the COTS DBMS client segment.

4. DBMSClient Services. This functional group provides the client network services for the DBMS and
runtime executables for other DBMS applications (e.g. Oracle*FormrauDor mexecutable). Its
components are installed on the network’s application server and on individual platforms.

The following specific segments are prepared by developers to provide databases within a COE-based
system configuration.

1. Application Database Segment. This database segment contains a database belonging to a component
application. It is installed on the database server.

2. Application Client Segment. This software segment contains applications that access a database
created by an Application Database Segment. It is installed on the network’s application server or on
individual platforms.

P14 COE 1&RTS: Rev 3.0 July 1997

Database Consider ations

3. Application Database Data Segment. This data segment contains the datafill of a component
database when that data fill must be separated from the Application Database Segment. It isinstalled
on the database server.

5.9.1.2 Database Segmentation Responsibilities

Three groups are involved in the implementation of database segments DISA, the application devel opers,

and the sites’ database administrators. The developers and DISA work together to field databases and
associated services for the DBAs to maintain. DISA provides the DBMS as part of the COE. Developers
provide the component databases. Sites manage access and maintain the data. Users interact with the
databases through mission applications and may, depending on the application, be responsible for the
modification and maintenance of data in the databases.

5.9.1.2.1 DISA

DISA or the cognizant DOD Program Office provides the core database environment in which the
applications’ database segments will be integrated. The basic functionality provided with that core
environment gets the database server ready for developers to add their databases and for the sites’ database
administrators to add and administer users.

The initial database contains the data dictionary, system workspace and recovery storage, storage for the
database component of any vendor tools, and an initial allocation of user workspace and temporary storage.
The application servers and client platforms are set up with the DBMS client environment so that users
need only execute the environment shell script to be able to connect to the server. Finally, the initial
operating system and DBMS accounts are established on the database server for the sites’ database
administrators.

5.9.1.2.2 Developers

Developers are responsible for providing everything associated with their application’s database.
Developers must define the owner account(s) for their base data objects. They must define and create the
data objects within those owner accounts. Aside from the data proper, developers must determine and
define the access levels and privileges that must exist for their segment’s database. Database roles must be
used to implement the users’ access controls to ease the maintenance burden on the DBA.

» Developers may implement specific auditing within their applications and databases, but shall not
modify the system’s security audits.

» Developers shall provide scripts for the DBA’s use to add, modify and remove user privileges.

5.9.1.2.3 Database Administrators

The System and Database Administrators at each site are responsible for creating, modifying, and removing
users’ DBMS and UNIX accounts using COE Tools. For security and ease of management, a “unitary

login” or single account name for each user for both the operating system and the DBMS is being adopted
for COE-based system. This means that users cannot use DBMS accounts defined by developers and that
developers cannot assume the existence of any particular user accounts except for accounts created by the
developer to support DBMS services. It also means, as required by the system Security Policy, that
database actions can be traced to the individual user. Security auditing is the responsibility of the sites’
DBAs. They are implemented as each site needs using the audit features provided by the DBMS.

A DBA creates users’ DBMS accounts as part of the process of granting users access to applications and
their associated databases. COE Tools are used to accomplish this. In order for these tools and the grants
process to work properly and smoothly, the developers must provide procedures, scripts, and instructions

DIl COE I&RTS: Rev 3.0 July 1997 215

Database Consider ations

for the DBA'’s use. Users’ access will change over time and few users will beagsdo all applications.

The developers’ procedures must support the addition of users and the revocation of users’ privileges.
Since those privileges correspond to applications or sets of applications, separate procedure scripts must be
provided for each application or set. If an application has multiple levels of privileges, then multiple
procedures must be provided.

5.9.1.3 DBM S Tuning and Customization

The core database server segment(s) is (are) configured and tuned by the organization responsible for it
(e.g., DISA, GCCS, GCSS) based on the combined requiretheh#sl developers’ databases (within the
program or DOD wide) taken together. Developers provide these requirements during Segment
Registration. This allows the DBMS Server segments to be reasonably independent of particular hardware
configurations and ignorant of specific application sets. It is not tuned or optimized beyond that.

The final tuning of the DBMS cannot be accomplished until a complete configuration is built and it has an
operational load. Developers should provide information into the tuning process, but should not make their
applications dependent on particular tuning parameters. Where a non-standard parameter is required for
operations, developers must provide that information to DISA so the DBMS services segment can be
modified accordingly.

The developers need to communicate any design assumptions and DBMS configuration requirements that
must be incorporated in the DBMS set-up. If, for example, developers need any settings in the Oracle

i nitDII. ora file that are not the default settings for the current data server segment used in the

currently available data server segment, that information needs to be provided to the DIl COE Chief
Engineer or responsible Program Chief Engineer early in the integration process for a forthcoming release.
Based on the impact of the change, DISA or the responsible Program Office can decide to modify the
baseline server configuration or to develop a database server patch segment to accompany the application’s
database segment and modify the in-place database server segment.

Similarly, sizing of system recovery logs, log archiving directories, and users temporary workspace is
based on the combination of the requirements of the various applications that use DBMS services.
Developers must communicate their minimum requirements for these so that the core DBMS is not set to
be too small. Most of the application tools provided by DBMS vendors are incorporated in the DBMS
segment in the functional category of Server Tools. To ensure that needed tools are available, developers
should advise the Chief Engineer what COTS tools they intend to use when registering the segment. When
such tools are used, the developer must identify the dependency under the database application segment’s
Requi r es descriptor.

» Developers shall not modify the core DBMS instance’s configuration. Extensions or modifications of
that configuration require the specific approval of the DIl COE Chief Engineer and will be
implemented by DISA in the COTS DBMS segment.

« If developers modify any of the executable tools (e.g. add User Exits to Oracle*Forms), then the
modified version of the tool does not reside with the core database services, but becomes a part of the
application’s client segment. This prevents conflicts among different modified versions of a core
function. The maintenance of that modified tool also becomes the responsibility of the developers.

5.9.2 Database I nter-Segment Dependencies

A key objective of the segmentation approach is to limit the interdependencies among segments. Ideally,
database segments should not create data objects in any other schema or own data objects that are
dependent on other schemas. However, one purpose in having a Database Server is to limit data

“8 An implication of this statement is that the combined requirements may lead to the need to develop a
multiple instance database server segment.

P16 COE 1&RTS: Rev 3.0 July 1997

Database Consider ations

redundancy and provide common shared data sets. This means that there will usually be some dependencies
among the databases in the federation. This section addresses the management of such dependencies.

The following principles apply when inter-database dependencies exist:

The database schema within a segment that will own the parent object will create that
object.

The database schema within a segment that will own the child (dependent) object will
create that object.

Database schemas with inter-database dependencies will strive to keep those
dependencies in segments separate from the non-dependent portions of the schema.
The referencing object, not the one that is referenced, owns referential dependencies
(e.g. foreign keys). If the only dependencies are referential, separate segments are not
needed.

Schemas retain their autonomy. The developer of a dependency (including referential
dependencies) is responsible for maintaining that dependency should other developers
change their database schemas.

Thefollowing are general requirements for database segments.

The following example illustrates (see Figure 5-18) how dependencies are to be created and managed. The
developers of database B need to attach a trigger to a table in database A. This trigger will feed data from A
to B every time that table is modified. Rather than include the trigger as part of B's Database Segment, it is
put into a separate Database Segment C, that modifies Database Segment A. C, the inter-database segment,

Application Database Segments shall not make modifications to another segment’s application

database. If a schema in an application database needs to create data objects in some schema belonging
to another application database segment, those objects will be placed in the application database
segment that owns those schema objects. Developers shall not create indexes on another application

database segment’s tables because of the performance problems they can cause.

Developers will not modify the schema of another segment’s database. If changes to table or column

definitions are needed, they must be effected by the developer of the database.

When dependencies exist they will be documented und&etipei r es descriptor of th&egl nf o
file. Object dependencies will be document undeiDémeabase descriptor of th&egl nf o file.

is dependent on the prior installation of both database segments and is so labeled Rewler ites
descriptor. The table is listed in tB&0ODl FI ES section of th&at abase descriptor.

DIl COE I&RTS: Rev 3.0 July 1997 217

Database Consider ations

Database Segment A
created by
Developer A
Database Segment B
created by
Developer B

Database Segment C
created by
Developer B
(dependent on A and B)

Segment dependencies arelisted in the Requires descriptor
Object dependenciesarelisted in the Database descriptor

Figure 5-18: Inter-Database Dependencies

5.9.3 Loading Data into Database Segments

After the objects bel onging to a Database Segment have been created in Post | nst al | , they may need to
be populated. Other objects, those containing dynamic data, may be initially empty. Where needed, a
database segment can perform initial datafill in the Load Data phase of the Post | nst al | . Severa
methods are discussed bel ow that can be used to accomplish data loads. Method sel ection should be based
on the amount of data to be |oaded.

If asmall number of records are to be loaded into atable, the load can be accomplished with insert
statements embedded in an SQL command script. The following excerpt is an example for loading datainto
Oracle.

sqgl pl us -silent DBSORT/ ${ DBO PWD} <<eof

I NSERT | NTO SORTSM BI DES (U C, SECUR, TI ME, SCLAS)
VALUES (‘N0O0001’,’U’,sysdate,’U’);

INSERT INTO SORTSM_BIDES (UIC, SECUR, TIME,SCLAS)
VALUES (‘N00002’,’U’,sysdate,’U’);

INSERT INTO SORTSM_BIDES (UIC, SECUR, TIME,SCLAS)
VALUES (‘N0O0003',’U’,sysdate,’U’);

eof

If alarge amount of dataisto be loaded into a database table, the use of a dataloading utility furnished by
the RDBMS is usually more efficient. In this case, the utility can be invoked from the LOAD_DATA

P18 COE I1&RTS: Rev 3.0 July 1997

Database Consider ations

section of the database definition script. Examples of these data loading utilities are Oracle SQL* Loader,
Informix dbload, Oracle or Informix Import, and Sybase bcp. These utilities require that the datato be
loaded be stored in afile with a specific format.

Files used for datafill belong in the dat a subdirectory of the database segment. The data directory within

the segment can also be used as a ‘mount point’ for CDROM, tape drive, or other bulk storage devices.
This is the preferred approach for large data loads. It allows the segment to be filled without occupying disk
space during the data fill.

The security classification of the data to be loaded must be considered during the implementation of a
database segment. When a classified data fill is part of the database segment, the entire segment becomes
classified at the same level as the data. Therefore, developers must separate the data fill from the database
segment when the database schema is not classified, but the contents are. The intent here is to keep
database segments unclassified as much as possible so schemas can be reused. The security classification of
a DIl COE system (e.g. GCSS) is a separate issue and is addressed in the security policy of that system’s
program office.

If a separate data segment is provided to accompany a database segment, that data segment must have a
DEI NSTALL capability. This frees storage after the data fill is complete.

It can take a long time to fill a large database. Developers should indicate the approximate load time in
their Rel easeNot es. The data load time can be reduced by loading the data before creating the database
constraints and indexes. Estimating the load time should only be done with clean data that has been tested
against the database constraints.

DIl COE I&RTS: Rev 3.0 July 1997 219

Tailoring the COE

5.10 Tailoring the COE

Most properly designed segments will not require any extensionsto the COE, except for the need to add
icons and menu items. This subsection describes some of the more commonly required extensions, and
techniques for addressing | ess frequently encountered extensions.

5.10.1 Adding Menu Itemsto the Desktop

Adding menu itemsisusualy required only when installing a software segment. Two pieces of information
arerequired: the name of the affected account group(s) and the menu itemsto add. Refer to the SegName
and Menus descriptors.

The installation software appends the contents of the segment’'s menu files to the corresponding menu files
in the affected account group(s). This forms a master template in the affected account group’s

dat a/ Menus subdirectory that is subsequently used to create operator profiles. Segments should use the
APPEND directive in the menu files to add items. Refer toEkecutive Manager Programmer’s Guidén

the Developer’s Toolkit documentation for the format of menu files.

Previous COE releases included a system menu bar that was displayed at the top of the screen, just below a
security banner. The COE no longer automatically provides a system menu bar. Segments that require a
system menu bar must use the Executive Manager APIs to explicitly add menu items when the application
initializes. Developers may only add menu items that are contained within the current user’s profile. The
APIs are constructed to prevent addition of menu items to the system menu bar that are not contained in the
current user profile.

Segments that use a system menu bar must also use the APIs to remove their system menu bar additions
when the application terminates. Refer toltlser Interface Specification for guidance on when it is
appropriate to use a system menu bar versus desktop icons.

5.10.2 Adding Iconstothe Desktop

As with menus, adding icons is usually required only for software segments. Two pieces of information are
required: the name of the affected account group and the icons to add. Ref&etgpNhge andl cons
descriptors above.

The installation software appends the contents of the segment’s icon files to a master list located with
affected account group(s). This forms a master template in the affected accountdmb@p’'scons
subdirectory that is subsequently used to create operator profiles. Refer to the Executive Manager API
documentation for the format of icon files.

Refer to thdJser Interface Specification for guidance on when it is appropriate to use a system menu bar
versus desktop icons.

5.10.3 Modifying Window Behavior (UNIX)

TheUser Interface Specification defines required window behavior for all segments. X Windows controls
window behavior through a collection of resource definitions. The resource definitions consulted are as
follows (if they exist):

Files located in the directofyusr /1 i b/ X11/ app- def aul t s.
Files in the directory pointed to IYAPPLRESDI R.

Resources inherited from the display’s root window.

The file$HOVE/ . Xdef aul t s.

PN

pPR0 COE I1&RTS: Rev 3.0 July 1997

Tailoring the COE

5. Thefile pointed to by XENVI RONMENT.

X Windows processes the controls in the order shown, and in such away that the last control specified
overrides any preceding contrals.

The COE must carefully control resources to avoid conflicts between segments. Therefore, segments shall

not place files in directories “owned” by X Windows (e.gusr/ | i b/ X11/ app- def aul t s.) Instead,
segments shall place their resources in the subdiregtadrg/ app- def aul t s underneath the segment
directory as shown in Figure 5-2. At install time, the installation tools create a symbolic link underneath
$DATA DI R/ app- def aul t s to each of the files contained in the segment. For this reason, segments
must use their segment prefix to name all app-defaults used in this manner.

Figure 5-2 also shows that segments may place additional fonts underneath the seginehfent s
subdirectory. At install time, the installation tools create a symbolic link undei®BATA DI R/ f ont s
to point to each of these files. Segments shall use their segment prefix to name font files used in this way.

The COE establishes the setting for environment variasl@hTSDI R, XAPPLRESDI R, and
XENVI RONMENT. Segments shall not modify their value. They are set as defined in subsection 5.3.

Motif follows a similar strategy for setting resources. The COE uses the Motif software provided with CDE
software. Refer to the Developer’s Toolkit documentation for more details on how Motif operates within
the CDE environment.

Segments manot place files in any directory “owned” by Motif (e.g.usr/ | i b/ X11/ app-
def aul t s/ MMM or CDE, nor may segments alter the account graupigir ¢ resource file, if it exists.

To summarize, for DIl compliance:

e Segments shatiot modify vendor distributed X Windows, Motif, or CDE system resources
(Xdef aul t s, rgh. t xt, etc.).

* Segments shaffiot place files in the X, Motif, or CDE distribution directories (e.g.,
lusr/lib/X11/ app- def aul ts).

« Segments shall use the segment prefix to uniquely name files underneath the setghanfont s
anddat a/ app- def aul t s subdirectories.

« Segments shatiot modify the COE established setting BAPPLRESDI R, XENVI RONVENT, or
XFONTSDI R

* Segments shatfiot modify the affected account group’swnr c file, if one exists.

5.10.4 Using Environment Extension Files (UNIX)

TheReqr dScri pt s descriptor allows extensions to the affected account group’s “dot” fitesh(c,

. 1 ogi n, etc.). This is most frequently done to add environment variables. However, unregulated use of
environment variables is detrimental to the system. The amount of space the operating system reserves for
environment variables is limited and loading a large number of segments could quickly exhaust this scare
resource. Each time a process is spawned, the child process inherits environment variables from the parent.
Resolving a large number of environment variables can take a significant amount of time and hence
degrade system performance.

DIl compliance requires adherence to the following guidelines:

DIl COE I&RTS: Rev 3.0 July 1997 221

Tailoring the COE

* Do not indude development environment variables in runtime environment scripts or extension files.

« Use “short names” for environment variables. UNIX stores environment variable names as character
strings in the environment space, so the longer the variable name, the faster environment variable
space is exhausted.

* Reuse environment variables already defined by the COE or affected account group.

* When feasible and efficient, use operating system services (such as pipes and streams) or data files to
communicate with other segments, or between components within the same segment.

* Do not use environment variables to communicate control data between components within the same
segment. Use operating system services or data files.

* Do not define environment variables that can be derived from other environment variables. For
example, to definblYySEG_BI N through

set env MYSEG_HOVE / h/ MySeg
setenv. MYSEG BI N $MYSEG_HOVE/ bi n

wastes environment variable space. The COE guarantees a predictable directory structure, so
$MYSEG_HOVE/ bi n can be used directly instead®#vSEG BI N.

* When feasible, have segment components create environment variables once they begin executing
throughput env or through “sourcing” a file containing needed environment variables. This approach
ensures that segment-specific environment variables are inherited locally by a single segment, not
globally by all segments.

5.10.5 Using Community Files

Community files are any files that reside outside a segment’s assigned directory. (Data files owned by the
segment underneathh/ dat a are considered an exception.) Most required community file modifications
are handled automatically by the installation software through descriptor directory filéSoffimeni t y
descriptor is used when the installation software cannot provide the modifications required.

All community file modifications are carefully scrutinized at integration time because of the potential for
conflict with other segments or the runtime environment. Developers should seek guidance from the Chief
Engineer before modifying any COTS community files (those owned by UNIX, X Windows, Moaitif,

Oracle, Sybase, etc.).

5.10.6 Defining Background Processes

When an operator logs in, the operating system uses various files to establish a runtime environment
context. Segments use tReocesses descriptor to add other background processes to the runtime
environment.

The COE differentiates between eight different types of processes:

Boot Processes launched each time the computer is booted or rebooted. Designate
boot processes with tI#BOOT keyword.

DCE Boot DCE processes launched each time the computer is booted or rebooted.
Designate DCE boot processes with $EBOOT keyword.

pR? COE 1&RTS: Rev 3.0 July 1997

Tailoring the COE

RunOnce Processes launched the next time the computer is rebooted. These are “one-shot”
processes and are only run the next time the computer is rebooted, but not for
reboots thereafter. Designate RunOnce processes wiltiRtihe ONCE
keyword.

Periodic Processes launched at btiote that automatically run periodically at specified
intervals (e.g., 6 hrs, 24 hrs) with no other user actions required to initiate the
process. These processes are equivalent to WNbH process. Use the
$PERI ODI C keyword to indicate these types of processes.

Privileged Processes that require “superuser” privileges to execute. Use the
$PRI VI LECGED keyword to indicate these type of processes.

Background Processes launched the first time an operator logs in after a reboot; these
processes remain active in the background even after the operator logs out.
Designate background process with $BACKGROUND keyword.

Session Processes launched when an operator logs in and remaining active only while
the operator is logged in. Designate session processes WiBHSS| ON
keyword.

Transient Processes launched in response to operator selections from an icon or menu.

Transient processes typically display a window on the screen, perform some
specific function in response to operator actions, and then terminate. In some
cases, the processes spawned may stay active for the length of the session, but in
all cases, the Executive Manager terminates transient processes when the
operator logs out. Designate transient processes throuyetius andl cons
descriptors.

Note: Because of the potential impact to other segments, system
performance, and system integrity, all processes except Session,
and Transient processes require prior approval by the Chief
Engineer. Boot, DCE Boot, privileged, and periodic processes
are strongly discouraged.

5.10.7 Reserving Disk Space

Segments frequently require additional disk space to accommodate growth over time as the system
operates. For example, communications logs are empty when the system is initially installed, but will
occupy space as messages are received and logged. Segments may reserve additional disk space through
theHar dwar e descriptor.

The installation software keeps track of how much disk space is actually in use and how much is reserved.
A segment will not be installed if the amount of space it occupies, plus any space it reserves, exceeds the
amount of unreserved disk space. The installation software allows the operator to select how full the disk
can be (80, 85, 90, or 95% of capacity). These safeguards are in place to avoid filling up the disk, but
segments are responsible for detecting when the amount of space requested is not available.

In rare situations, segments may require space on multiple disk partitions. $EARTE TI ONS
keyword for theHar dwar e descriptor.

DIl COE I&RTS: Rev 3.0 July 1997 223

Tailoring the COE

5.10.8 Using Temporary Disk Space

Segments may require temporary disk space during segment installation and during system operation. The
COE provides techniques for accommodating both uses for temporary space.

Temporary disk space may be requested during segment installation through the STEMPSPACE keyword in
the Har dwar e descriptor. The installation software sets the COE_TMPSPACE environment variable to
point to the location where temporary space is allocated. This environment variableis defined only during
segment ingallation. The installation software automatically deletes all filesin thistemporary area when
segment ingallation is completed.

The environment variable TMPDI R pointsto atemporary directory that may be used during system
operation. However, thereisalimited amount of disk space set aside for temporary storage so it must be
used sparingly. A better approach isfor ssgmentsto store temporary datain their own dat a subdirectory.

Segmentsthat use TMPDI R must delete temporary files when they are no longer required. For UNIX
systems, all filesin thisdirectory are automatically deleted when the system isrebooted. Thisis not true for
NT platforms. All segments, as amatter of good programming practices, should delete temporary files
when they are no longer needed.

5.10.9 Defining Sockets

Requests to modify the/ et ¢/ ser vi ces fileto add sockets is done through the COESer vi ces
descriptor. This control point for requests to add socket names and ports helps avoid conflicts between
segments. Port numbersin the range 2000-2999 are reserved for COE segments. Segments should avoid
creating sockets with port numbers less than 1000 since these are generally reserved for operating system

usage.

pr4 COE I1&RTS: Rev 3.0 July 1997

PC-Based Applications

5.11 Miscellaneous Topics

This subsection discusses a variety of miscellaneous topics that are related to segmentation, use of the DI
COE, etc.

5.11.1 Color Table Usage

The COE must carefully control how the color table is used to avoid objectionable “false color” patterns

that may appear when mouse focus changes from one window to anothidsel heterface Specification

gives guidance on what colors to use from a human factors perspective, but it does not provide guidance on
how segments are to coordinate such usage through the COE.

This document will be expanded to include guidance for color table usage as the impact of COTS products
and legacy applications is evaluated.

5.11.2 Shared Libraries

The COE strongly encourages the use of shared libraries to reduce memory requirements. Developers may
create shared libraries (DLLs for NT platforms) through use dbltze edFi | e segment descriptor.

(UNIX) Developers should also link to X and Motif shared libraries to reduce memory requirements. The
Motif libraries provided by CDE should be used instead of the libraries provided by Motif or some other
source. This alleviates the need to maintain Motif shared libraries used both by the desktop (e.g., CDE) and
other applications.

5.11.3 Adding Network Host Table Entries

Platform IP addresses and hostnames are site-dependent. Hostnames in particular are most often selected by
the site and usually cannot be predicted in advance. Therefore, segments shall not include any assumptions
about a platform having a specific name or following any particular naming convention, nor make any
assumptions about a specific IP address class.

Segments should rarely need to add entries to the network host table. An operator usually establishes such
entries through system administration functions. For those situations where a segment must do so, the
$HOSTS keyword in theNet wor k descriptor allows IP addresses, hostnames, and aliases to be added to
the network host table. The address may be added to either the local host table, or to the DNS/NIS/NIS+
maintained host table.

Prior permission must be given by the DIl COE Chief Engineer to u$HB8TS keyword, and

permission will be granted only for COE-component segm¥etsi f y Seg will issue a warning for any
segment which uses t§&iOSTS keyword, and a warning if the segment does not includ®KE

keyword. A future release will issue an error if the segment does not provide a valid authorization key.

5.11.4 Registering Servers

Servers are registered with the COE througs®ERVERS keyword in theNet wor k descriptor. Only
COE-component segments may register servers. Prior permission must be given by the DIl COE Chief
Engineer to use theSERVERS keyword.Ver i f ySeg will issue a warning for any segment which uses
the $SERVERS keyword and strictly fail the segment if it is not a COE-component segment.

A segment that needs to determine the location of a server may @XatfiendSer ver function (see
Appendix C).

DIl COE I&RTS: Rev 3.0 July 1997 225

PC-Based Applications

5.11.5 Adding and Deleting User Accounts

Segments are not normally allowed to create operator accounts (e.g., UNIX user login accounts). Segments
may create system accounts, through the COESer vi ces descriptor, for the purpose of establishing file
ownership. Operator accounts are normally added to the system through use of the Security Administrator
application. They are customizable by security classification level, by access permissions granted or denied
against application objects, and by granting or denying access to menu or icon items. The segment
descriptors Acct Gr oup, Securi ty, Perm ssi ons, Menus, and | cons provide these controls.

Figure 5-3 shows that operator accounts may be global or local. This attribute is specified when the
operator account is created. If the server that contains operator accountsis down, global operator logins
will be unavailable until the server isrestored.

Profiles may also be global or local. This attribute is determined when the profileis created. If aglobal
profileisnot available at login time (e.g., the server isdown), login proceeds but the operator is notified of
the problem and the system is placed in a safe state.

Some segments require the ability to perform additional operations when a user account is created, or to
perform cleanup operations when a user account is deleted. Thisis done by using the $ACCTADD and
$ACCTDEL keywordsinthe Di r ect descriptor. Moreover, the $PROFADD, $PROFDEL , and
$PROFSW TCH can be used to perform segment-dependent operations when user profiles are created or
deleted, or when a user switches from one profile to another. Due to security implications, these keywords
require prior permission from the Chief Engineer and use of the $KEY keyword.

5.11.6 Character-Based Applications

Support for character-based interfacesis provided through the Char | F account group. An account is
established for individual users through the same process as all other accounts, but the account isidentified
as a character-based interface account only. Operator profiles may be set up, but only those segments that
support a character-based interface (seethe Di r ect descriptor) are accessible.

Theremote user connects to the designated server through aremote login session. Once connected, the user
is prompted for alogin account and password. A menu of options, such as

0) Exit
1) AdHoc Query
2) TPFDD Edit

Enter Option:

is presented to the user. The option selected is executed and results are displayed on the user’s remote,
character-based display.

5.11.7 License M anagement

The COE contains a license manager to administer COTS licenses. Vendors take a variety of approaches in
how they control and administer licenses. For this reason, the techniques for automating license
management are still under development and are being handled manually. Refer to the DIl COE Chief
Engineer for further assistance in creating a segment that requires a license manager.

Developers should include the COTS vendor’s version number as the secondary version number as
described in Chapter 2. This will facilitate automated license management.

DIl COE I&RTS: Rev 3.0 July 1997 226

PC-Based Applications

5.11.8 Remote versus L ocal Segment Execution

Segments which are remotely launchable are designated by the $REMOTE keyword inthe Di r ect
descriptor. This feature isnot currently implemented, but isreserved for future implementation. Devel opers
are encouraged to use the $REMOTE keyword and design their segments to account for local versus remote
execution. Thus, when this featureisfully implemented, devel oper segments will be positioned to take
advantage of the capability.

5.11.9 Modifying Network Configuration Files

Setting up anetwork requires modification of several network configuration filesto set netmasks, identify
subnets and router's, etc. Proper network configuration is essential for proper system operation and
performance. For thisreason, only COE-component segments may establish network configuration
parameters. Thisisaccomplished through the Net wor k descriptor.

Prior approval from the DIl COE Chief Engineer isrequired. Ver i f ySeg will issue awarning for any
segment that uses the Net wor k descriptor and grictly fail the segment if it is not a COE-component
segment. Note that the $KEY keyword must also be specified to give a valid authorization key.

5.11.10 Establishing NFS M ount Points

NFS mount points are defined through the $MOUNT keyword in the Net wor k descriptor. Establishing
mounted file systems can seriously degrade system performance. Poor design choices that result in several
different mount points can create single points of failure, or result in sequencing problems when the system
isloaded or rebooted. For these reasons the DI COE Chief Engineer must approve mount points for COE-
component segments. The cognizant Chief Engineer must approve mount points for mission application
segments.

Ver i f ySeg will issue awarning for any segment which uses the SMOUNT keyword. It will strictly fail
any COE-component segment that does not specify the $KEY keyword.

6. PC-Based Applications

This chapter describes the DIl COE features that are available for PC platforms. The present DIl COE
supports PC Windows NT*® only. The COE concept is not specific to UNIX, or NT, or any other operating
system or windowing environment. However, certain adjustmentsto COE implementation detailsare

required to support differences between the PC-based NT environment (use of '\’ versus ‘/’ in haming
directories, byte swapping, etc.) and UNIX, as well as to take advantage of features offered in the NT
environment (e.g., registry).

The extensions described in this chapter to accommodate NT are not platform-dependent (e.g., limited to
80x86 PCs). Commercial industry has implemented the Microsoft NT operating system on selected other
platforms (e.g., DEC), but such platforms are not presently in wide use in the DIl community. COE support
for NT on platforms other than PCs will be considered when they are in widespread use in the DII
community. Throughout this version of th&RTS NT and PC may be used interchangeably with the
understanding that NT is not limited to PC platforms.

49 Windows 3.1 and Windows for Workgroups 3.11 are not supported. Windows 95 is not presently a
supported platform because of known security problems within the operating system. When the security
problems are resolved, Windows 95 may be added to the list of supported platforms.

DIl COE I&RTS: Rev 3.0 July 1997 227

Disk Directory Structure

6.1 Disk Directory Structure

The NT-based COE uses the same basic directory structure shown in related figures from Chapter 5.
However, Intel-based computers store data bytes in a different order than other processors. This makes data
sharing viadisk more difficult. This section describes the COE disk directory extensions required to
support PCs.

Badc Directory Structure

Thelogical directory structure shown in Chapter 5 is preserved for PCs. On the primary disk drive,
subdirectory \ h is created at theroot level with subdirectories COTS, Acct G ps, CCOE, dat a, etc. Unless
overridden by the ingaller, the installation software will attempt to put segments on the primary disk drive
first. If it cannot do so, it will load the segment on the next avail able hard disk. The environment variable

I NSTALL DI Risset to point to where the segment was loaded at install time, just as for UNIX platforms,
and includes the disk drive designation in the pathname.

Segment Directory Structure

A Scri pt s subdirectory is optional for NT segments because environment extension files are not
supported, nor are they needed. Account group segments that need to establish global environment settings
shall do so by entering required settingsin the registry. Segments that need to establish local environment
settingsmay do so through a. | NI file that shall be located in the segmeiditzg a\ | NI subdirectory. All
of a segment’s private INI files shall be stored in the segmeat'a\ | NI subdirectory.

NT segments shall place all executables irbihe subdirectory. Segments that contain dynamic link
libraries (DLL files) shall place them in tié n subdirectory. Except for COTS segments, segments are
not allowed to load DLL files in any other subdirectory.

USERS Directory Structure

The NT COE uses the same operator directory structure as the UNIX COE, as described in Chapter 5.
Local operator accounts are specific to a single NT platform, while global operator accounts are accessible
from any NT PC on the network. However, operator accounts may not be mixed between UNIX and NT
platforms. Thus, an operator account, whether global or local, is either an NT operator account or a UNIX
operator account, but never both.

Global operator account subdirectories (&.9\, USERS\ gl obal) are physically located on an NT
designated as the server. This directory is made accessible to other PCs on the network trsbagte the
command.

Environment variabledSER_HOVE, USER_DATA, andUSER_PRCFI LE are set by the appropriate

account group and have the meaning described in Chapter 5. They are provided for backwards
compatibility and should not be used in the NT-based COE. As with UNIX applications, segments shall use
a Preferences API to locate user-related data. This is because data may ultimately be moved to the registry
or reside in different locations depending upon the NT configuration (e.g., workgroups versus domains). By
using thePreferences APIs, the developer can assure future compatibility.

Data Directory Structure

Chapter 5 defines data in terms of data scope. Local data is stored undenhektha\ | ocal while

global data is stored underneatm\ dat a\ gl obal . Because data stored on the PC is not directly
compatible with UNIX platforms, an additional data subdirectory is created for storingiy?@lobal data.
This is the subdirectofyh\ dat a\ PCgl obal . Segments shall follow the same rules for this directory as
for the\ h\ dat a\ gl obal directory, except that only PC segments are allowed to access it. This

DIl COE I&RTS: Rev 3.0 July 1997 228

Disk Directory Structure

subdirectory is physically located on a PC designated as the server and made accessible to other PC
platforms on the network.

Like global data, PCgl obal datais shared between platforms. However, PCgl obal data(and local data
on PC platforms) is stored in native PC-byte order and can only be shared among PCs. PCs may also access
data stored in the\ h\ dat a\ gl obal subdirectory. However, this directory is always physically located
on a UNIX machine designated as a server. PC segments shall read and write datain the

\ h\ dat a\ gl obal directory in network byte order. PC segments shall read and write datain the

\ h\ dat a\ | ocal and\ h\ dat a\ PCgl obal directoriesin native PC byte order.

Miscellaneous

1. Segmentsshall use file extensonsthat correspond to conventional Windows usage. That is, use. EXE
for executables, . DLL for dynamic link libraries, . TXT for ASCII text files, etc. Note this means that
NT segment descriptor files should usethe. TXT extension,™ but shall usethe. BAT or . CVD (for
batch™ files), or . EXE (for compiled programs) extension for Post | nst al | , DEI NSTALL,
Prel nstal | ,andPreMakel nst .

2. Segments, excepting COT S segments and in some cases shared DLLS, shall not set the Windows
pat h environment variable. If the segment provides shared DLLs for use by other software, and if
thereis no alternative way for that software to locate the DLLS, the segment may add a directory to the
path for those DLLS.

3. Segments shall use the standard Windows APIsto locate a directory for temporary disk storage. This
correspondsto using / t np in UNIX. Segments shall delete temporary files when an application
terminates. Unlike the UNIX-based COE, the NT-based COE does not automatically delete filesin the
Windows temporary directory when the computer isrebooted. Thisisin keeping with current
commercial usage of the Windows temporary directory.

4. Segments shall not add a global “home” environment variable to the affected account group.
5. Environment extension files are neither supported nor required in the NT-based COE.

6. app- def aul t s subdirectories are not meaningful in the NT-based COE. Special handling of fonts
(i.e., af ont s subdirectory) is not currently supported in the NT-based COE, but may be in the future.
NT segments should not include either of these subdirectories. If they are included with a segment, the
installation tools will not do any special processing for these subdirectories as they do for the UNIX-
based COE.

% For backwards compatibility, NT segments may omit tA&XT extension. However, this is strongly
discouraged. The segment must be consistent in altvays using the TXT extension omever using it.

Veri fySeg will strictly fail a segment that does not follow this convention. Otherwise it will be
confusing and unclear which descriptor takes precedence when a segment includes the same segment
descriptor, once with theTXT extension and once without it.

*! Developers should avoid the use of batch files and use executables whenever possible. Batch files, in PC
NT, will cause a command shell window to pop up while the batch file is running.

DIl COE I&RTS: Rev 3.0 July 1997 229

Account Groups

6.2 Account Groups

Account groups in the NT-based COE correspond to Windows Program Groups. The present NT COE does
not include the Char | F or DBAdmaccount groups.

When the COE isloaded, theinstallation tools create program groups Sec Admand Sy s Adm The program
itemsin each program group are determined as segments are loaded. Some program items, specifically for
SecAdmand SysAdm are provided by native Windows software and therefore will also be found in other
program groups provided by Windows. Thisis done by creating duplicate iconsthat point to the same
executable, not by creating multiple copies of the software.

Aswith the UNIX COE, the specific icons and program groups available to an operator depend upon the
operator profile.

DIl COE I&RTS: Rev 3.0 July 1997 230

Registry Usage

6.3 Registry Usage

Microsoft Windows programs have traditionally created “INI” files to store configuration information.
Windows 95 and Windows NT useeyistry™ instead to store hardware parameters, configuration data,

and Windows-maintained operator preferences. The registry is structured as a hierarchical database of keys
organized into a tree structure.

NT segments should not overuse the Windows registry in place of INI files. In particular, operator
preferences that are very segment specific should not be stored in the registry since this may needlessly fill
up the registry, and it will be difficult to manage as user accounts are created and removed. Moreover, the
registry is not portable between NT and UNIX. It is recommended that operator preferences be stored
underneath h\ USERS to minimize porting problems between UNIX and NT applications. (Use the
appropriate COE APIs to determine the correct data directory for the current operator.) Segments may use
private INI files but, if they are used, they shall be located in the segrdemnts | NI subdirectory.

Except for COTS segments, segments shall not create root keys, but may create subkeys underneath the
root keys as desired. In all cases, segments shall create segment subkeys underneath

HKEY LOCAL_MACH NE\ SOFTWARE\ COE

using the conventiolseg Type\ SegDi r Narme whereSegType is one of the following:

Account G oups for account group segments
CCE for COE-component segments
Cors for COTS products

Dat a for data segments

Pat ches for patch segments

Sof t war e for all other segment types.

SegDi r Nane is the segment’s directory name. Segments shall use the segment prefix to name all registry
subkey entries.

For example, assume a software segment whose direcegfshas a segment prefBEGA. Assume the
segment needs to store two pieces of information underRE& Y LOCAL_MACH NE\ SOFTWARE:

1. the last coordinate system used (Universal Transverse Mercator [UTM], Lat/Long, etc.) and
2. the last time a certain parameter was computed.

Then the required registry path is
HKEY_LOCAL_MACHI NE\ SOFTWARE\ COE\ Sof t war e\ SegA

and two appropriately named subkeys underneath this entry for storing value entries are
SEGA Last _Coor d andSEGA Last _Ti ne.

Note: Thekey HKEY LOCAL_MACHI NE\ SOFTWARE\ CCE is created
when the DIl COE isinstalled.

Microsoft encourages use of the registry in some ways that are strictly forbidden in the COE because the
CCEl nst al | er tool performs some of these actions automatically. Segments, excepting COTS segments,
shall not use the registry to duplicate any actions performed by the COE installation software:

%2 Developers should avoid overuse of the NT registry. It is best used for system-level constroatsiand
a total replacement forl NI files.

DIl COE I&RTS: Rev 3.0 July 1997 231

Registry Usage

e Segments shall not register “uninstall” information in theni nst al | key beneath
Cur r ent Ver si on, with two exceptions: (1) when the segment is a COTS product that does register
“uninstall” information as part of its setup, or (2) as authorized by the DIl COE Chief Engineer. If the
segment does register “uninstall” information, it shall specifyBli8ES_UNI NSTALL keyword in
theDi r ect descriptor.

« Segments shall use tReocesses descriptor to specify background processes. Segmentsiahall
add values to either thRun or RunOnce keys beneath th@ur r ent Ver si on key. The segment
shall use th&RUN_ONCE keyword to specify the requirement to run certain executables the next time,
and only the next time, the system is restarted. Use of this keyword requires approval by the cognizant
DOD Chief Engineer.

DIl COE I&RTS: Rev 3.0 July 1997 232

Reserved Prefixes, Symbals, and Files

6.4 Reserved Prefixes, Symbols, and Files

The segment prefixes listed as reserved in Chapter 5 are also reserved in the NT-based COE. The following
segment prefixes are reserved and are specific to the NT-based COE:

NT Generic NT segments

W N Generic Windows segments

W N95 Windows 95 segments

W NNT Windows NT segment for 80x86 platforms

The environment variables listed asreserved in Chapter 5 are also reserved in the NT-based COE.
Segments shall not create environment variables with the same name as any reserved environment variable.
The following have no meaning in the NT-based COE, and are not guaranteed to be set:

DI SPLAY
LD LI BRARY_PATH
SHELL

TERM

TZ

XAPPLRESDI R
XENVI RONVENT
XFONTSDI R

All remaining environment variables listed in Chapter 5 are also defined for the NT-based COE.

Theroot-level AUTOCEXEC. BAT, CONFI G SYS, AUTCEXEC. NT, and CONFI G NT files are reserved
files and shall not be modified by any segment, excepting COTS segments. Moreover, all windows INI
files (specifically, W N. I NI and SYSTEM | NI) arereserved files and shall not be modified by any
segment, excepting COT S segments. Segments should create and modify their own local INI files.

DIl COE I&RTS: Rev 3.0 July 1997 233

Programming Standar ds

6.5 Programming Standards

Programming in the Windows environment is considerably different from the UNIX/X Windows
environment. This subsection details programming practices that are required to minimize problemsin
mixing the two environments.

6.5.1 File System

Windows NT supportsfive file systems: FAT, VFAT, HPFS, NTFS, and CDFS. FAT (File Allocation
Table) isthefile system used by MS-DOS, but it is extended in both Windows 95 and Windows NT
(version 3.5 and later) to support long filenames (e.g., VFAT). HPFS (High Performance File System)

originated with 0S/2®. NTFS (NT File System) originated with Windows NT as an improvement over
both HPFS and FAT. CDFS (CDROM File System) is specific to CDROM devices.

NTFS is the file system required for the DIl COE because its security architecture corrects known problems
in FAT. Dll-compliant systems shall be formatted to use NTFS. However, the FAT and VFAT file systems
are the only available file systems for floppy disks. Therefore, the COE requires NTFS for hard disk drives,
but supports FAT and VFAT for floppy drives. The type of file system in use should be transparent to most
segments. When there is a choice, NTFS shall be used for hard and VFAT shall be used for floppy drives.

A further complication is that NTFS filenames use the 1&hitode® character set instead of 8-bit
ASCII. Unicode is atechnique for representing foreign al phabets (Japanese kanji, Chinese bopomofo,
Greek, etc.). NT segments are not required to create Unicode strings, but segments must be able to read
filenames that may be Unicode strings. This requirement is necessary because commercia products may be
distributed on mediathat use Unicode filenames and because Windows NT uses Unicode stringsinternally.

Pathnamesin Windows usually include adisk drive designation (e.g., C:). The disk drive containing the
desired file may be located remotely on another machine. Windows allows symbolic names, caled the
Universal Naming ConventigitNC), to be given to remote paths so that an application need not know the
platform, disk drive, or exact path to reach a particular file. UNC pathnames start with two backslashes
(\\) followed by the server name, followed by the desired pathname and filename. Segments shall support
the use of UNC pathnames.

To summarize,

1. Segmentsshall support the use of long filenames. Filenames are not allowed to contain embedded
gpaces and should use file extensions as appropriate to conform to standard Windows usage.

2. Segments shall support use of UNC filenames.

3. Segments shall be capable of correctly interpreting Unicode strings, those representing filenames.

6.5.2 Dynamic Link Libraries

NT segments shall use DLLs to the maximum extent feasible. DLLs are located in the seginment’s
subdirectory, except for COE segments. COE DLLs are located underneath the diftec@Di\ bi n
for all COE segments.

Windows originally exported DLL functions by assigning ordinal numbers to each exported function.
Modules linked to DLL functions by ordinal number. However, later versions allowed linking to be by
symbolic name rather than ordinal numbers. All NT segments shall link by symbolic name and shall export
DLL functions by symbolic name rather than ordinal numbers. The reason for this requirement is that
ordinal numbers for exported functions could change with time, whereas symbolic names will not.

DIl COE I&RTS: Rev 3.0 July 1997 234

Programming Standar ds

6.5.3 Graphics

PC segments shall support Video Graphics Adapter (VGA) and Super Video Graphics Adapter (SVGA)

resolutions, and should use the Win32 API Graphics Display Interface (GDI) for creation of 2D graphics.
Thisinterface handles dl calls made by applications for graphic operations and thus provides a standard

interface for such calls. Asaresult, the Win32 GDI allows segments to be devel oped which are

independent of the type of graphics output device in the end user’s system. That is, segments need only
make calls to standard graphic services provided by the Win32 subsystem regardless of the display, printer,
or multi-media hardware used in the system.

To improve 2D graphics performance, the WinG library may be used. WinG is an optimized library
designed to enable high-performance graphics techniques under Win32, Windows NT, Windows 95, and
future Windows releases. Segments should use OpenGL APIs for 3D graphics. OpenGL is a software
interface that allows the creation of high-quality 3D color images complete with shading, lighting, and
other effects. OpenGL is an open standard designed to run on a variety of computers and a variety of
operating systems. It consists of a library of API functions for performing 3D drawing and rendering.

6.5.4 Fonts

Windows supports three different kinds of font technologies to display and print text: raster, vector, and

TrueTyp@. The differences between these fonts reflect the way thghybiefor each character or symbol

is stored in the respective font resource file. In raster fonts, a glyph is a bitmap that Windows uses to draw a
single character or symbol in the font. In vector fonts, a glyph is a collection of line endpoints that define

the line segments Windows uses to draw a character or symbol in the font. In TrueType fonts, a glyph is a
collection of line and curve commands as well as a collection of hints. Windows uses the line and curve
commands to define the outline of the bitmap for a character or symbol in the TrueType font. Windows

uses the hints to adjust the length of the lines and shapes of the curves used to draw the character or
symbol. These hints and the respective adjustments are based on the amount of scaling used to reduce or
increase the size of the bitmap.

Vector and TrueType fonts are device independent, while raster fonts are not. TrueType fonts provide both
relatively fast drawing speed and true device independence. By using the hints associated with a glyph,
application software can scale the characters from a TrueType font up or down and still maintain their
original shape. Segments shall use TrueType fonts to take advantage of the increased performance,
flexibility, and What-You-See-Is-What-You-Get (WYSIWYG) screen-to-printer characteristics.

Customized application-specific fonts shall be avoided in favor of using industry standard fonts wherever
possible.

6.5.5 Printing

NT segments shall use the built in printing facilities provided by Windows. This includes using the
Windows supplied printer common dialog box for configuring a printer, selecting print quality, selecting
the number of copies, etc. All access to the printer shall be through Windows APIs.

Developers should be aware that some Win32 APIs are available only in Windows NT. Developers may

use these APIs, but should ensure that the segment still operates correctly in a Windows NT environment.
As appropriate, NT segments should support drag-and-drop printing.

6.5.6 Network Considerations

UNC Filenames

NT segments shall support UNC filenames to access network shared drives and directories. If necessary, a
segment can use the WinNet APIs to determine if a pathname is a network pathname.

DIl COE I&RTS: Rev 3.0 July 1997 235

Programming Standar ds

The COE contains three pre-defined shared directories: \ h\ dat a\ PCgl obal ,\ h\ dat a\ gl obal , and
\ h\ USERS\ gl obal . The proper UNC filenameto use for these three directoriesis determined by
accessing registry subkeys underneath HKEY_LOCAL_ MACHI NE\ HARDWARE as follows:

COE\ Shar ed\ dat a_PCgl obal \ h\ dat a\ PCqgl obal
COE\ Shar ed\ dat a_gl obal \ h\ dat a\ gl obal
COE\ Shar ed\ USERS_gl obal \ h\ USERS\ gl obal

NT segmentsthat create network sharable services or devices shal store UNC information in theregistry.
The subkey shall be either COE\ Shar ed or SEGS\ Shar ed depending upon segment type. The subkey
shall be located underneath HKEY_LOCAL_ MACHI NE\ HARDWARE for hardware devices (e.g., disk
drives) or HKEY_LOCAL_MACHI NE\ SOFTWARE for software (e.g., servers). The segment shall document
the proper registry information in the APl documentation for the segment.

Networ k Byte Ordering

Computer architectures sometimes differ in the convention they use for how bytes are ordered in a word.

This is the so-calleddig-endian, little-endian” problem. Computers in which thmost significant byte in a

word is the leftmost byte use big-endian byte ordering. Computers in whildashsignificant byte in a

word is the leftmost byte use little-endian byte ordering. Intel architectures use little endian byte ordering.
When data is sent across the network, it is important to agree upon the same convention for byte ordering.
The big-endian convention is also known asrigtework byte order and has been established as the industry
standard.

The COE adopts the industry standard for byte ord®ramgd requires the use of network byte order for

any data transmitted across a heterogeneous LAN. Segments shall ensure that all network data is
transmitted in network byte order, except for certain data accessed on a PC-only network shared disk drive
such as th€Cqgl obal data directory. Segments shall use APIs in the WinSock interface to ensure that

data sent across the network is in network byte order. Segments shall store disk data accessible only by PCs
in native PC byte order, but shall store disk data accessible by non-PCs in network byte order. The shared
data directories and byte ordering are as follows:

\ h\ dat a\ PCgl obal PC native byte order. Data here is shared, but is restricted to
only PCs.
\ h\ dat a\ gl obal Network byte order. Data in this directory may be accessible

from a UNIX platform as well as PCs.
\ h\ USERS\ PC PC native byte order. Data located here is specific to operator
login accounts. Since a login account is either for UNIX or a
PC but never both, this data is platform-specific.
Networ k Communications

Windows NT supports four transport layer protocols:

NetBEUI provides compatibility with existing LAN Manager, LAN
Server, and MS-Net installations.

TCP/IP provides compatibility with standard UNIX environments and
a routable protocol for wide area networks.

%% DCE developers should use DCE functions to implement network byte ordering. All other developers
should use XDR protocol.

DIl COE I&RTS: Rev 3.0 July 1997 236

Programming Standar ds

Data Link Control (DLC) provides an interface for access to mainframes and printers
attached to networks.
Appl eTalk® provides interoperability with Macintosh networks.

TCP/IP isthe COE standard network protocol. Segments shall perform network communi cations through
WinSock APIs. Communications shall be designed to operate asynchronously to ensure that the server or
application does not “hang” while waiting for a response.

6.5.7 Miscellaneous

The following statements apply to all new segment development. COTS segments may not meet all
mandatory requirements, but shall be documented where they do not fulfill a mandatory requirement. To
the extent possible, segments should conform to the requirements stipulated by Microsoft for allowing an
application to use the Windows Logo. TI®ERTS fully supports the Microsoft Logo branding approach as

a subset of the requirements for full DIl COE compliance.

Mandatory

1. All hardware shall be NT-compliant, as defined by the documdéerpsoft Windows NT Hardware
Compatibility List #4094.

2. Segments shall support VGA and SVGA graphics.

3. Segments shall be “close aware.” This means that the segment must enable the Close command and
periodically check the close flag through the Query Close function.

4. Segments shall use common control and common dialog functions conta@@dJnL32. DLL and
COVDLG32. DLL.

5. As appropriate, segments shall support cut and paste operations through the clipboard.

6. As appropriate, segments shall support drag and drop operations.

7. Segments shall support 16x16, 32x32, and 64x64 icons.

8. Segments shatiot use MS-DOS APIs inside a compiled program. These functions arallypic
interrupt-driven or depended upon specific memory addresses and are not portable. Win32 APIs only
are to be used within a compiled program. Segments may use MS-D®@&ads within the various

installation-related batch files.

9. Segments shall usmly Win32 APIs. Win16 APIs are not supported and shall not be used unless they
are part of a COTS product for which there is no 32-bit alternative.

10. Segments shall not duplicate functionality already provided by Windows.
11. Segments shall support long filenames and UNC.

12. Segments shall support the use of Unicode strings.

Optional

1. Segment developers should run the Windows SDKRGBITTOOL. EXE to identify potential
problems with how Windows APIs are being used.

DIl COE I&RTS: Rev 3.0 July 1997 237

Programming Standar ds

2. Segments should operate under both Windows NT and Windows 95. The segment should degrade
gracefully if it uses APIs found only in Windows 95 whilerunning in a Windows NT environment, and
vice versa.

3. Segments should definethe STRI CT constant when compiling Windows code. This enables strict type
checking during compilation.

4. Segments should avoid using environment variables. Theregistry or local INI files are preferred
aternatives.

5. Developers are encouraged to use message crackers contained in W NDOWSX. H. Message crackersare
a set of macros that make code more readable, simplify porting, and reduce the need to do type casting.

6. Asappropriate, segments should register icons for document types and provide a viewer to allow the
shell to display them. Thisis donethrough the HKEY CLASSES ROOT registry. Refer to Microsoft
documentation for the required procedures. A future COE rel ease may provide segment descriptorsto
accomplish this.

DIl COE I&RTS: Rev 3.0 July 1997 238

Segment I nstallation

6.6 Segment | nstallation

Segment ingtdl ation follows the same sequence as for the UNIX environment, and is defined in Chapter 5.
The key

HKEY LOCAL_MACH NE\ SOFTWARE\ COE

isautomatically created when the DIl COE kerndl isloaded. As segmentsare ingaled on the NT platform,
CCEl nst al | er createsregistry entries under this key corresponding to segment type as explained in
subsection 6.3. That is, assuming SegDi r is the segment’s directory name gbefy Ty pe is the segment’s
type, the installer creates the following registry key entry:

HKEY_LOCAL_MACHI NE\ SOFTWARE\ CCE\ SegType\ SegDi r
All entries underneath this registry key are deleted automatically when the segment is deleted.

CCEl nst al | er sets the environment variableSSTALL_DI R, MACHI NE_CPU, andMACHI NE_GS for

use in thePr el nst al | . BAT (or. EXE) andPost | nst al | . BAT (or . EXE) descriptors.

SYSTEM ROOCT is set to indicate where Windows was installed. The installer also stores the location where
the segment was loaded in the subkegDi r\ SegPat h. The value of this subkey includes the disk

drive where the segment was loaded, but it cannot be accessed until after segment loading is completed.

It is strongly recommended that segments use the segment descriptors provided to “self-describe” the
segment and allow th@COEl nst al | er to perform the installation chores. This ensures a consistent
approach for all segment installations, and avoids potential conflicts between different segment installation
approaches.

DIl COE I&RTS: Rev 3.0 July 1997 239

Web-Based Applications

6.7 NT COE Descriptors

The descriptor files defined in Chapter 5 apply to the NT-based COE aswell. Thissection is provided asa
quick reference for itemsthat are NT-rdated. Refer to Chapter 5 for compl ete discussion of each of the
descriptors discussed below.

General comments follow.

* NT segmentsarerequired to use Segl nf o for descriptors, that is, NT segments may not use
individual descriptor files since these are obsol ete. All obsolete conventions are explicitly invalid for
NT segmentsand are flagged as errors by Ver i f ySeg.

« Pathnames must be given usihgih conformance to the Windows environment.

* Segments should not need to specify a disk drive because such designations are considered to be
advisory only. For backwards compatibility, when a disk drive designation is given, it and any
associated pathname must be enclosed in double quotes. This is required so that the tools can
distinguish between use of ;" as a field delimiter for descriptor lines, or as a separator between a disk
drive name and a directory pathname.

* In accordance with commercial standards, executable descriptors shall have.diKErextension
(for compiled programs) or.aBAT extension (for batch files). This applies to the “scripts” used in the
installation proces®El NSTALL, Post I nstal | ,Prel nstal | , andPr eMakel nst. Segment
descriptor files may optionally have &XT extension.

« TheSYSTEM ROOT environment variable is set to indicate where the Windows system directory is
located. This environment variable may be used in the installation-related “scripts” at install time.

Comments related to specific descriptors follow.

AcctGroup

NT account groups must omit theell parameter. It has no meaning in Windows.
COEServices

The $GROUPS and$PASSWORDS keywords are not supported for NT platforiver i f ySeg generates a
warning if a segment descriptor contains these keywords.

DEINSTALL.EXE and DEINSTALL.BAT

Chapter 5 indicates thBEI NSTALL is executed prior to a segment being removed from the system. A
segment that does not includ®®@ NSTALL descriptor is a permanent segment and may be updated, but
not removed. In many situations, it is desirable for the segment to be removable, but there are no actions
that DEl NSTALL must perform. For this reason, the NT-based COE allisvNSTALL to exist as a zero-
length file and it may exist as a file with no extension.

FileAttribs

Because file permissions are different between the UNIX and NT environfRehtsat t ri bs is
operating system specific. The COE thlkeAt t ri bs, when run on an NT platform, will create a
properFi | eAttri bs file for NT segments. C styté f def preprocessor statements may be used to
combine a UNIX and NFi | eAttri bs descriptor.

0 COE 1&RTS: Rev 3.0 July 1997

Web-Based Applications

Hardware

The diskname field for the $PARTI TI ON keyword must be a disk drive name. For example, to indicate
that a segment requires 20MB on the F disk drive, the proper $PARTI Tl ON statement is

$PARTI Tl ON:"F:":20480
Networ k

The Network descriptor isnot presently supported for NT platforms. VerifySeg — will issue awarning if
aNetwork descriptor isfound for an NT segment.

Processes
The $RUN_ONCIEeyword identifies process that should be run the next time the system is started. This

keyword requires authorization by the cognizant DOD Chief Engineer because of potential security and
performance risks.

Registry
The Registry descriptor alows the segment to have the COEIngaler create registry key entries.
RegrdScripts

Environment extension files are not supported for NT platforms. Therefore, the ReqrdScripts
descriptor isnot supported for NT platforms. VerifySeg — will print awarning if this descriptor is present.

SegName

The SCOMPANY_NAMEd $PRODUCT _NAMé&ywords allow a COTS segment to specify company and
product names for the registry. These are added by the COElnstaller , and must not be specified if the
COTS product createsregistry entriesitself.

SharedFile

This descriptor allows the segment to identify shared DLLSs.

7. Web-Based Applications

The DIl COE includes a collection of COE-component segmentsto support Web-based applications. This
provides a foundation for the development of Web-based segments within the DIl COE, and for mission
applications built on top of the COE. The Web component segments provide services and infrastructure for
the delivery of HTML files™ from a Web server to a Web browser. One of the key goals in adding Web
capabilities to the DIl COE isto foster sufficient discipline to prevent anarchy, while permitting aflexible
Web runtime environment.

The COE Web component segments are designed to meld diverse system and operator requirements while
benefiting from advances in Internet technology and functionality. Evolution of Web component segments
isdriven by several factors:

* The term “HTML file” is used throughout this chapter to refer to hyperlinked pages that may be traversed
from a Web browser. These files may be documents or HTML pages in the traditional sense, but may also
contain “executables” in the form of applets or other techniques.

DIl COE I&RTS: Rev 3.0 July 1997 241

Web-Based Applications

e architectural freedom for creativity and rapid progress,

* reduction of site maintenance workload,

e improved configuration control,

e improved service to customers with low-bandwidth,

e customer demand for access to (and sharing of) remote data sources, and
e therapid pace of Web innovation.

This chapter is devoted to explaining the COE Web component segments and to providing implementation
guidance for creating Web mission-application segments. It should be noted that the majority of userswill
likely use PCs, so thisis consdered thetarget client platform for Web devel opment. However, the
principles and techniques presented here work equally well for the UNIX environment.

Section 7.1 discusses fundamental COE Web concepts. Section 7.2 describes Web administration and user
accounts. Section 7.3 contains miscellaneous information pertinent to devel oping Web segments, including
an overview of HTML requirements for the COE Web. Section 7.4 describes what happens when Web
segments are installed, and section 0 completes the chapter with a brief discussion of supported
configurations.

M2 COE I&RTS: Rev 3.0 July 1997

Fundamental COE Web Concepts

7.1 Fundamental COE Web Concepts

All Web-based segments must be DII-compliant. This applies to Web-based COE infrastructure software as
well as mission-application software. The principles that govern how segments are loaded, removed, or
interact with one another are the same for al DIl COE segments, but COE Web component segments are
treated more strictly because they are the foundation for a Web-based application.

It isimportant to recognize that just because a Web segment is part of the COE, it isnot necessarily always
present or required. Considerable flexibility is offered to customize the environment so that only the
segments required to meet a specific mission application need be present at runtime. This approach alows
minimization of hardware resources required to support a COE-based system.

7.1.1 COE Web Component Segments

The DIl COE provides a collection of component segmentsto provide the architectural framework for
managing and distributing data from a common Web server. Management Services include system
adminigration, security administration, and segment registration. System administration includes the ability
to monitor system performance. Security administration includes atool for managing Web-based access
contral ligts (consistent with the format required by the Web server), and the ability to create and manage
Web user accounts.

These services are independent of any particular segment. It isanticipated that diverse segmentswill be
ableto coexist, providing access to awide variety of data sets. However, integration and/or cooperation
between segmentsisthe responsibility of the segment devel opers.

7.1.1.1 Web Servers

A Web server isrequired to provide the interface between users and Web-based applications. The DIl COE
provides a Web server as a COE-component segment, thereby eliminating the requirement for individual
Web segmentsto include a Web server. A Web mission-application segment shall not includeits own Web
server. Itisrequired to use the Web-server segment provided by the DIl COE. Thisisin keeping with the
overall DIl COE philosophy of not duplicating DIl COE services.

A siteingtallation may contain multiple platforms set aside to function as Web servers. The platforms may
also serve other functions, but it is expected that sites will use firewalls to isolate Web servers from therest
of theworld. For thisreason, the COE requiresthat al Web-application segments be loaded on a machine
that already contains a Web server. That is, the application interface must be on the Web server but other
parts of the system that the application needs to access (e.g., database server) need not reside on the Web
server.

7.1.1.2 Web Browsers

The COE includes a Web browser, and COE-based systems will use that browser. However, non-COE
based systems can use their native browser to access services provided by the Web server. Web technology
isevolving at arapid pace, so the Web server must accommodate and address evolving Web standards. The
DIl COE Web server does not restrict or constrain the types of HTML files (Virtual Reality Modeling
Language [VRML], executable content, etc.), subject to appropriate security considerations.

7.1.2 Web Mission-Application Segments
Web-application segments shall place their HTML filesin the directory

$DATA DI R/l ocal / SegDi r/ pub

DIl COE I&RTS: Rev 3.0 July 1997 243

Fundamental COE Web Concepts

where SegDi r is the segment’s assigned directory. The HTML files are thus placed in the local data
directory on the machine that hosts the Web Server(s). The COE creates a symbolic link from

COE/ Conp/ WbSvr / dat a/ pub/ SegDi r

to this directory at installation time. The reason this symbolic link is created is so that the Web server can
access HTML files provided by the segment. Only Web component segments are allowed to modify HTML
files created by other applications, which is typically for the purpose of inserting value-added HTML tags
prior to delivery to a browser. The importance of these principles cannot be overemphasized to avoid
environmental conflicts between software components.

P4 COE 1&RTS: Rev 3.0 July 1997

Web Account Groups

7.2 Web Account Groups

Operating systems such as UNIX and NT assign individual login accountsfor users. There may also be
configuration files for login accountsthat establish aruntime environment context. The Web environment
presents a different set of requirementsfor user accounts since there isno need for a standard UNIX or NT
login account or any of the associated configuration and environmental files. Instead, Web user loginsare
validated by the Web server that isalso responsible for enforcing access control, including restrictions
based on the combination of user account and IP (or IP class) on a directory-by-directory basis.

Web account groups can be used to share access privileges among a collection of users according to how
they will use the system. Thistechnique isused in the COE to identify three distinct account groups:

* Web System Administrator Accounts,
* Web Security Administrator Accounts,
* Norma Web User Accounts.

Other account groups may exist for specialized system requirements, but all account groups follow the
samerules. Within a Web account group, profiles can be created as with normal COE account groups
defined in Chapter 2.

7.2.1 Web Security Administrator Account

Security administration in the COE Web isimplemented through a special Web account for managing the
Web user account database. Precise functionality of security management is dependent on the Web server
and its configuration. Therole of the Web security administrator includes:

» Ability to create individual Web login accounts
« Ability to create operator Web profiles
* Ability to review the Web server error and user access logs

The Web security administrator need not be the DI security administrator, but thisis recommended to
centralize security management.

7.2.2 Web System Administrator Account

System administration consists of a specialized collection of functionsthat alow a system administrator to
perform maintenance, monitoring, and configuration operations. The role of the Web system administrator
includes:

« Ability to create and to restore backup tapes

* Ability to monitor and configure the Web COE-component segments

* Ability to establish site-specific products and links for user access

* Ability to review the Web server error and user access |ogs

« Ability to tailor Web applications (consistent with the application design) to balance overall system
performance

The Web system administrator need not be the DIl system administrator, but thisisrecommended to
centralize system administration.

7.2.3 Web Usar Accounts

Most operatorswill not require, nor will Web administrators grant access to, capabilities described in the
previous sections. Most system users will be performing mission-specific tasks. The precise features

DIl COE I&RTS: Rev 3.0 July 1997 245

Web Account Groups

available depend upon which mission-application segments have been loaded and the profile assigned to
the operator.

The COE establishesindividual operator login accounts and stores user-specific dataitems, including
profile information describing which options and services are available to the operator. Since users do not
directly access Web segments (i.e., the Web server provides the interface between the browser and
segments), many of thenormal DIl COE requirements for additional user-specific directories and services

do not apply.

M6 COE I1&RTS: Rev 3.0 July 1997

Miscellaneous

7.3 Miscellaneous

The use of server-sideincludes (SSIs)* isnot alowed because of the additional complexity it imposes on
the Web COE in the control of data. The subsections that follow provide additional requirements and
information for Web segments, beginning with HTML specifications.

7.3.1 HTML Specification

Therapid pace of innovation in Web technology makesit difficult to standardize on the exact HTML

syntax that Web-application segments must support. Indeed, any HTML standard is only as good as the
browser implementation. HTML version 3.2 isthe latest standard, but it isnot fully featured. For example,

it lacks the <FRAMES> tag. Furthermore, version 3.2 isnot fully supported by all popular browsers (e.g.,
Netscape 3.0 does not support style sheets). DIl COE Web segments must, as a minimum, support

HTML 3.2 and frames. The application segments should be designed to work with browsers that do not
support frames or all parts of the HTML 3.2 specification, or at a minimum notify “disadvantaged” users.
The Web server must be able to support HTTP 1.0 and HTTP 1.1 transport protocols.

An HTML file consists of a document head and a document body, as identified by the HT MIHEA>>
</ HEAD> and<BODY> </ BODY>. For the purposes of this section, it is convenient to separately discuss
the data content within these tags.

7.3.1.1 HTML <HEAD>

The HTML head shall contain three important data elements:

* Title (determined by the Web segment that creates the HTML file)

« Key words (used by Web search engines to identify and index Web sites for global search)

* Expiration date (usingXPl RES) to assist browsers in automatically rejecting out-of-date information

Key words or subjects are appended to META tags and significantly facilitate the ability of Web search
engines to locate data services at other Web sites. These tags must not contain classified information (even
if the entire system is running on a secure network); access to the underlying data will only be granted to
users with valid accounts at the associated Web site. The use of Web search technology (bots, crawlers,
spiders, etc.) requires coordination with each Web site since a login/password is required for any DII-
compliant Web server connection; importantly, access to data by search engines can be provided for
HEAD-only information (once a login and password have been authenticated for the special “HEAD-only”
account). Additional restrictions can be implemented using access control lists in each directory. A segment
that only generates dynamic, on-the-fly, HTML files may create a static HTML file with identification
information specifically for the purpose of identifying the segment’s information content. The HTML file

shall be calledegment _name. ht m The format of this HTML file shall be a standard HTML file with

META tags for key words and subjects, thereby allowing HEAD-only searches to gather profile

information.

7.3.1.2 HTML <BODY>

The DIl COE approach is to specify the minimum set of HTML tags that are currently supported, or likely
to be supported, by the popular browsers (e.g., from Microsoft and Netscape). The COE does not explicitly

% Server-side include is a technical process whereby HTML pages are parsed by the server prior to the
page being sent to the client. This allows the server to dynamically insert information into the page before it
is sent to the client.

DIl COE I&RTS: Rev 3.0 July 1997 247

Miscellaneous

prohibit the use of additional HTML tags asrequired by a Web segment to satisfy its requirements, but
provision may be made by the segment developer to alert “disadvantaged” users to potential problems.

Each Web segment is responsible for properly classifying every HTML page that it creates. The
classification marking should be placed at the top and bottom of the HTML page (there is no notion of page
breaks in HTML).

7.3.2 User Interface

Innovations to the Web interface offer improved user interaction and navigation via the FRAME tag, Java,
JavaScript, and ActiveX functionality. These techniques enhance the user interface capabilities of Web-
based applications, but at a price. The security community has expressed concerns about the potential for
viruses or other malicious software spread through Java applets and applications. Developers should note
that DISA is presently formulating a policy on Java usage for creating applets, and for execution by Java
Virtual Machines. An update will be issued when an appropriate policy and guidance have been
formulated.

Refer to theDIl User Interface Specification for further style-related guidance in developing Web-based
applications.

M8 COE I&RTS: Rev 3.0 July 1997

Installing Web Mission-Application Segments

7.4 Installing Web Mission-Application Segments

Ingtallation of Web segments, whether they are COE-component segments or mission-application
segments, is accomplished as for al other segments. There are some special considerations for Web
mission-application segments.

Web mission-application segments must reside on the same platform as a Web Server. The COE
installation tools will not allow a Web-application segment to be loaded unless there is a Web-server
segment already |oaded.

During installation of a Web mission-application segment, two symbolic linksfor use by the Web server
are established, namely

* Alink for accessing Web pages from the directory
COE/ Conp/ WbSvr / dat a/ pub/ SegDi r
to the directory
$DATA DI R/l ocal / SegDi r/ pub

e Alink for accessing Common Gateway Interface (CGI) programs from the directory
COE/ Conp/ WbSvr / dat a/ pub/ cgi - bi n/ SegDi r
to the directory
$DATA DI R/l ocal / SegDi r/ cgi -bin

Also, theht t pd. conf file will contain an “execution” statement and a “pass” statement of the form:

Exec /cgi-bin/* [h/COE Conp/ WbSvr/ dat a/ pub/ cgi - bin/*
Pass /* / h/ COE/ Conp/ WebSvr / dat a/ pub/ *

Here are two examples to clarify the navigation process for locating HTML files and CGI programs.
Suppose a segment callglSEG uses a gateway program callB8ST, which is referenced in an HTML
page as

FORM ACTI ON=/ cgi - bi n/f MYSEG TEST

This program will be found by the Web server as follows. First, the “execution” statement is used to
convert the file’s location to

/ h/ COE/ Conp/ WebSvr / dat a/ pub/ cgi - bi n/f MYSEG TEST
Then, the symbolic link transfers this reference to
$DATA DI R/ | ocal / MYSEQ cgi - bi n/ TEST
As a second example, suppose an HTML page contains a hyperlink to a file
HREF=ht t p: / / host nanme: 9000/ MYSEG DCC

Once the connection is established to a Dll-compliant Web server, then the “pass” statement is used to
convert the location of the HTML file to

/ h/ COE/ Conp/ WebSvr / dat a/ pub/ MYSEG DOC
Then, the symbolic link transfers this reference to

$DATA DI R/l ocal / MYSEG pub/ DOC

DIl COE I&RTS: Rev 3.0 July 1997 249

Installing Web Mission-Application Segments

Note: The DIl COE edablishes the SUID for the Web server.
Applications must not be created which depend upon a particular

setting. Instead, segments shall allow the COE segment installer
to handle such details automatically.

All HTML filesin $DATA_DI R/ | ocal / SegDi r/ pub must be readable by the Web server. The
Segment Installer will automatically set the permissions on Web HTML files when the segment is |oaded.
Furthermore, all HTML files created by the segment for Web access must be placed in

$DATA DI R/ ocal / SegDi r/ pub and must be readable by the Web server.

P80 COE 1&RTS: Rev 3.0 July 1997

DCE-Based Applications

7.5 Supported Configurations

The COE Web component segments establish an open architecture that isnot tied to a specific Web
browser. They use industry standards for interfacing to the Web server (e.g., CGl) and de facto standards
for HTML (as contained in HTML 3.2 and extended by the leading browsers). The HTML specification has
not progressed to the point where a common presentation is guaranteed across all popular browsers.

Thelist of supported Web servers and Web browsers isheavily dependent on market forces as the Web
industry evol ves to satisfy commercia requirements. In general, it is desirable to minimize any specific
dependencies on a particular browser or server. Presently, thereis no commercial agreement on Web server
standardization and much work remains to eval uate the leading candidates. Refer to the DISA DIl COE
Chief Engineer for the current status on server and browser requirements.

Precise hardware requirements in terms of memory, disk space, etc. isafunction of many factors and
cannot be specified in a general context. Refer to the DISA DIl COE Chief Engineer for hardware
configuration options.

8. DCE-Based Applications

The DIl COE isdesigned to support applications usng the distributed client/server computing mode!.

There are many ways to implement a digtributed client/server environment. The DIl COE provides the

Open Software Foundation'®§F) DCE as a baseline for distributed architecture/standards. To be DII-
compliant, there is no requirement to use DCE as the baseline for a client/server implementation or that
segments be client/server-based. However, if the application uses RPCs (Remote Procedure Calls), they
must be compatible with DCE RPCs.

DCE is an integrated set of services that supports the development, use, and maintenance of distributed
applications. A set of written standards and a package of developer’s software are available frontTthe OSF.
Based on these, a large number of applications have been written by various software vendors for end
users. Use of DCE is not restricted to UNIX environments. Clients or servers may operate on other
operating systems, although most applications employ Microsoft Windows or Windows NT clients and
UNIX servers.

The purpose of this chapter is to provide the minimum essential informatiesgary for developers to

begin creating DCE mission applications. It is not a tutorial on DCE, nor does it provide an in-depth
discussion of development tools, management procedures, or compliance criteria (in the sense of DCE
standards). Developers using DCE should refer to OSF or vendor documentation for general guidance on
DCE.

The DII COE provides a COTS implementation of a DCE server and a DCE client. Developers shall use
these rather than providing their own copy of an alternative COTS DCE product. This is required of all
segment developers, including mission-application developers, because the end COE-based system is likely
to be installed on a LAN that includes multiple COE-based systems where incompatible DCE products

could create interoperability and administration problems.

Note: Segments must specify the DCE attribute to make use of any of
the DCE features described here. A fatal error message will be
generated by the Ver i f ySeqg tool if a segment references DCE
segment descriptors but failsto indicate that it is a DCE segment.

% DISA maintains a facility called the Operational Support Facility in the Washington, DC area.
Throughout this chapter, unless otherwise indicated, OSF refers to the Open Software Foundatbn and
to DISA’s Operational Support Facility.

DIl COE I&RTS: Rev 3.0 July 1997 251

DCE-Based Applications

Refer to Chapter 5 for information on how to specify the DCE
attribute for a segment.

P82 COE I1&RTS: Rev 3.0 July 1997

DCE Overview

8.1 DCE Overview

OSF’'s DCE is commercial software that provides a comprehensive set of services that support the
development, use, and maintenance of distributed applications. DCE allows diverse systems to work
together cooperatively and masks the technical complexities of the network. Because DCE is independent
of the operating system and network, it is compatible with many diverse environments.

The strength and appeal of DCE stem from its ability to make a group of loosely connected systems appear
as a single system to Information Systems (1S) staff, end-users, system administrators, and application
developers. Applications executed under DCE take advantage of untapped resources on networks by
finding the platform best suited for a particular job. Similarly, complex tasks can be easily split among
multiple computers on the network to reduce computing time and improve performance. From a security
perspective, users in a DCE-enabled computing network need only log in once for access to all network
platforms.

Many compare the OSF's DCE to wiring or plumbing because it provides the underlying transport layer
that enables distributed client/server applications to interoperate across a heterogeneous environment. DCE
currently consists of the following services:

* RPCs

« CDS

« Distributed Time Service (DTS)
« DFS

e Security Service

e Threads.

8.1.1 Remote Procedure Call

The key to making many disparate resources function logically as one system within DCE is the RPC. In
DCE, RPCs let multiple computers execute applications, or parts of applications, on the platform chosen by
the developer as best suited for the task.

The RPC makes a wide variety of application capabilities possible that were previously either impossible or
extremely difficult to implement. These capabilities include the following:

1. allowing multiple clients (in a client/server network) to interact with multiple servers, and multiple
servers to handle multiple clients simultaneously,

2. the ability for clients, through DCE’s Directory Services, to identify and locate network users by
logical service name,

3. protocol independence across the network for any platform, and

4. secure communications across the network.

8.1.2 Cdll Directory Services

The DCE CDS provides a single naming model throughout a distributed environment. Directory Services

let users access network services, such as printers, servers, and other network platforms, by name, without
the necessity of knowing where the resource is located within the network. This lets users access a network
resource even if the resource has been moved to a different physical network address.

DIl COE I&RTS: Rev 3.0 July 1997 253

DCE Overview

The CDS can make use of its built-in X.500 Global Directory Service (GDS) for locating resourcesin
externa cells, or can make use of Domain Name Service (DNS) for this purpose. Cell names are
constructed differently depending on which approach is selected.

e TheDIl COE will use DNSto locate external cells, and therefore will use DNS-style cell names.

8.1.3 Distributed Time Service

DCE DTS alows multiple platforms to work together to share information without timing problems that
might affect event scheduling and duration. DTS regulates system clocks on each network computer so that
they match each other. Clocks are synchronized, and the service ignores faulty system clocks. The DCE
Time Service uses authenticated DCE RPC so that, unlike the Internet Network Time Protocol, the DCE
global clock synchronization is secure. Also, to support network sites that wish to use time values from
outside sources, DTS supports the Network Time Protocol standard. The DCE Time Service also includes a
published Time Provider Interface to allow it to receive inputs from other rdiable time sources, such as
Global Positioning Satellite (GPS) or other military systems.

* DCE DTS providesintra-cel clock synchronization in the DIl COE. Inter-cell synchronization is not
supported.

8.1.4 Distributed File Services

The DCE DFSisafundamenta element for information sharing in DCE-enabled networks. It is one of

many facilities that could theoretically be built on the foundation provided by DCE’s Core Services. DFS
unites the file systems of all network nodes for a consistent interface, making globaddds as easy as

local access. It replicates files and directories on multiple network machines for fast and reliedse a

even when communication lines and network hardware fail. It also caches copies of currently used files at
the requesting node to minimize network traffic and provide fast data access.

Note: DFS is not presently provided as part of the DIl COE. It is
described here for completeness sake. Specific communities may
implement DFS on top of the DII COE. Information in this
chapter about DFS describes it as it is planned to be used by the
GCCS community. This may serve as a useful model for other
mission domains.

8.1.5 Security

While security maintenance and administration are simplified for one central system behind a glass wall,
security for dozens of computers scattered across a wide area network, all operating as a single entity, is
much more complicated. DCE’s Security Services ensures distributed security. The Security Service
software layer is made up of three mechanisms: authentication, authorization, and user registry. DCE
invokes these services through the RPC, which maintains the integrity of information passed across the
network.

The authorization mechanism grants authorized users access to resources and rejects requests from
unauthorized users. DCE implements Access Control Lists (ACL) based on a draft POSIX standard that
provides a fine-grained object/operation security authorization model.

The user registry permits users to access multiple network resources through a single password and single
login. The registry is a single database of user information that may be replicated around the network. User
passwords and security-related attributes are centrally stored and univeiasidlylav

PB4 COE I&RTS: Rev 3.0 July 1997

DCE Overview

Many security features, including auditing, delegation, and a registry extension to support non-UNIX
systems, are provided by DCE. Improved security is one of the primary motivations for the movement to
DCE for DIl applications. OSF DCE provides the following significant features related to security:

1. DCE Authentication provides a secure mechanism (unforgeable) for establishing identity. This
prevents a user from compromising the authentication process by using a ‘root’ account on any
machine to project UNIX credentials.

2. Authorization for execution of applications is based on DCE credentials in addition to UNIX
credentials. The granularity of execution control on a base UNIX system is limited to an
owner/group/world model that is not sufficiently flexible. As a result, almost all applications are set to
enable world execute permission.

3. Authorization for operation invocation is based on DCE credentials. Most existing applications either
do not have granular access decisions or have implemented their own means of access control. An
example of the latter is a database server that may define roles as a means of protecting classes of
operations. New applications and those being migrated need this more consistent means of defining,
managing, and performing these operations.

4. DCE security allows a client to securely project its identity, including memberships, in other security
groups. This allows authorizations to be group-based rather than user-based.

5. Single-login allows all relatedcaess decisions to be based on the same distributed identity. Without
this capability, users may be required to login to multiple systems or applications, and security
administrators must keep multiple identities and security files in synchronization.

6. Execution auditing records DCE and UNIX credentials. This records the identity of anyone running an
audited application (see below).

7. Protection against packet insertion/replay, packet interjection, and eavesdropping can be achieved
when using DCE RPCs at the appropriate security level or when using the Generic Security Services
API (GSSAPI) to protect data transmitted over the network.

Note: For the near term, security for DIl distributed applications will be
provided by the DCE Security Service, which is based on
Kerberos. The OSF and DOD are exploring ways to link DCE
security with DOD initiatives such as MISSI. Other security
mechanisms may be provided in future versions of the DIl COE
as the COE migrates from a software-based security solution to a
hardware-based solution.

8.1.6 Threads

The underlying Threads Service is used by several DCE services, including the RPC. Threads are programs
that use “lightweight” processes to perform many actions concurrently. Threads are particularly useful in
allowing server applications to process multiple requests concurrently. DCE Threads are based on the
POSIX threads standard. OSF has designed the multi-threading capability of the Threads Service to be
easily accessible by programmers wishing to use it in applications. Most commercial applications using
threads are written in C, so these DCE services can be accessed through the C programming language.
Bindings exist for Ada, as well as other high-level programming languages.

DIl COE I&RTS: Rev 3.0 July 1997 255

DCE Overview

8.1.7 Client/Server Concepts

DCE is specifically designed to manage the distribution of processing across multiple platforms. Itisa
powerful infrastructure for building client/server architectures. The client/server computing model for DCE
introduces a few additional terms.

1. IntheDCE context, a server isasingle executable program that provides servicesto clients. An
example of aserver isaDBMS or amap server that provides map images to a calling application. A
site can employ multiple serversto create amore available or more balanced service environment. A
DIl segment can contain multiple servers each performing some related service.

2. A sarver implements one or more services, each of which is offered through an interface. Interfaces are
well defined, using the DCE Interface Definition Language® (IDL), and are the concrete descriptions
of aservice. Usually, a server implements at least two interfaces. One provides the operationa
interface for client requests. The other provides a management interface (e.g., for security). Internally,
all DCE serversimplement other interfaces used for querying, stopping, or reconfiguring the server.

3. Aninterface provides access to one or more operations, each of which correspondsto a specific
function or procedure call. For example, a complex math interface could provide separate operations
for complex addition, subtraction, multiplication, and division. The operations within an interface
should be very closdly related.

4. In DCE clients have the option of locating one or more copies of a server through use of the DCE
CDS. The client presents a CDS name (or listing) and, optionally, a resource element (object Unique
Universal Identifier [UUID]). The CDS name corresponds with the logical service name rather than a
machine or hostname. Thisindirection allows DCE to provide location independence and employ
multiple compatible servers for availability or load balancing.

5. Each operator usng DCE isidentified with aunique DCE principal. A DCE principal hasa DCE
account maintaining its DCE identifier (UUID) along with its UNIX identity (uid, gid). A DCE
principal will map uniquely to a UNIX userid.

6. Each DCE server isalso identified with a particular principal. For security reasons, server principas
should map to UNIX useridsthat are not allowed to login (i.e., without alogin password). These UNIX
userids correspond to the concept of a “system account'ulike).

7. Although it is not necessary for the client and server to be installed on separate machines, one of the
primary reasons for constructing client/server applications is to share access to one or more server
resources by multiple clients. Since the segment is the smallest installation unit, the client and server
portions of an application are usually delivered in separate segments.

" The DCE IDL should not be confused with the CORBA IDL. Both are similar in concept, but differ in
implementation.

P86 COE I1&RTS: Rev 3.0 July 1997

DIl COE DCE Services

8.2 DIl COE DCE Services

The DIl COE supplements the COTS DCE product with a number of tools to assist the developer in
creating segments that use DCE and in ingtaling and managing DCE at an operational site. Commercial
products are preferable, but many of the tools and features required are not available commercially. The
tools discussed in this section, and the DCE-related tools described in Appendix C, are specifically
designed for the DIl COE rules for DCE applications. In addition, devel opment of DCE guidance for the
COE highlighted some issues that must be addressed in order to assist in the devel opment of DCE mission-
application segments and implementation of DCE in the COE.

8.2.1 Standard Server Installation

Thefirs part of a DCE server installation process must run asroot. Installation of the DCE server has been
standardized for the COE and is part of the DCE COE-component segment. Installation uses a
parameterized dcecp script to create an initial CDS entry and principal for the sesgment, and give it
permissionsto create therest of the structure.

8.2.2 Standard Server Initialization

A secure DCE server must make between 7 and 30 DCE calls on initialization to establish configuration
and security information and to register its presence to a CDS. The COE provides a standard server
initidization routine.

8.2.3 Standard Client Binding

DCE provides an “automatic” binding routine that will find a suitable server and make a connection.
However, this does not work for secure connections or the recommended object model. The alternative
requires the client to deal with CDS querying, security, and the possibility of missing servers. The COE
provides a standard client binding to allow COE clients to make a single call and not have to deal with this
level of complexity.

8.2.4 Standard Reference Monitor and ACL M anager

Secure DCE servers must implement a Reference Monitor (RM) routine to verify the client’s credentials
against a server’s ACL, and an ACL manager to maintain application ACLs. For the DIl COE, a standard
RM and ACL manager are provided as a library routine to every server developer so that security decisions
are made in a standard, certifiable manner. The OSF provides a boiler-plate RM, which has been
parameterized and “segmented” for use by DIl applications.

8.2.5 DCE Verification

TheVer i f ySeg tool includes verification of DCE application segments. Refer to Chapter 5 for the
appropriate segment descriptor entries and to subsection 8.3.4 for a brief synopsis of the required segment
descriptors. COE tools verify that a DCE segment has been properly installed and that CDS entries meet
the COE guidelines and agree with the entries in the relevant DCE segment descriptor.

8.2.6 Template Application

Creating DCE segments can be difficult because of complexities within DCE itself. To aid segment
developers, the COE Developer’s Toolkit contains an example template application. This application serves
as a working model and template for developers of other DIl COE applications using DCE.

DIl COE I&RTS: Rev 3.0 July 1997 257

Runtime Environment

8.3 Runtime Environment

Many of the security-related objects and concepts within the rest of the COE and UNIX have counterparts
within DCE, although the DCE object often has more powerful features and attributes. This section states
requirements for the development of client/server applications using DCE. The guidance provided shall be
followed by all DIl applications using DCE, including applications that do not yet fully comply with the
DIl COE. Failureto comply with this DCE guidance may result in operational conflicts between
applications.

This section begins with a description of the directory structure required for DCE segments. The general
structure for segmentsis described in Chapter 5, but it is useful to collect the information into this section
as an easy reference for relevant information. Then, the conventions for CDS and DFS for the COE are
described. A summary of segment descriptors relevant to DCE are described and the remainder of this
section gives specific information on COE conventions for DCE, organized by server and client.

8.3.1 Segment Directory Structure

DIl segments are delivered in accordance with afixed file/directory structure defined in Chapter 5. Some
DCE information is also delivered in UNIX files. Other information, such as CDS information, must be
ddivered asfilesand built in CDS as part of installation.

Figure 8-1 illugtrates the DIl COE directory structure for segments. The shaded portions indicate the
additional DCE-gpecific information which is required. Chapter 5 contains information about segment
descriptorsthat arerequired for all segments, including DCE segments.

The additional information required to describe DCE segmentsis as follows:

e IDL for al interfaces shall be delivered in files of theform i nt er f ace. i dl in the segment’'s
i ncl ude directory, wherénterface is the name of the interface.

» DCE installation/deinstallatiodcecp scripts shall be delivered in files nantoke_i nstal | . dcp
anddce_dei nstal | . dcp in the segmerSegDescr i p directory.

* Additional DCE-related configuration information is recorded inDGESer ver Def and
DCECl i ent Def segment descriptors. See subsection 8.3.4.

P88 COE I1&RTS: Rev 3.0 July 1997

Runtime Environment

SegDir
I

Scripts bin data man include lib Integ SegDescrip

—I stubs.o dce install.dcp
dce_deinstall.dcp
—| interface.idl DCEDescrip
| | o

Icons Menus keytab fonts app_defaults server Ldcp

server2.dcp

servern.dcp
serverl.tab
server2.tab
servern.tab

Figure 8-1: COE Directory Structure for DCE Segments

8.3.2 CDS Structure

Figure 8-2 illustrates the CDS structure for a DIl COE cell.*® The following description summarizes the
structure:

* Server configuration entries are included under
/. :/hosts/ host nanel confi g/ srvrconf/ servi cenane.
These entries will be built by the segment DCE install ation script.

e User principal DCE entries have the same name asthe UNIX userid. They areincluded in CDS under
/.:/sec/principal / usernane, but can bereferenced in security APIs using just the username.

* Server principa DCE entries have thename host s/ host nanel ser vi cenane. These entriesare
referenced in CDS under
[.:/sec/principal /hosts/ host nanel servi cenane.

% Although the CDS directory is described using notation that is similar to the UNIX directory/file system,
the CDS is entirely independent from the UNIX file system. The CDS structure includes containers that
correspond with UNIX directories, and entries that correspond to leaf nodes or files.

DIl COE I&RTS: Rev 3.0 July 1997 259

Runtime Environment

€ BAJSS _

T oA JeS _

£ PAKS
2N s
TJoA s

a|1jo.d € BAJSS
a|1jo.d z BAJSS
a|1jo.d T BAJS

2N s
TJoA s

[swefao | [sdnosb | [zsoy| 1m0y |

| an |

=

[s3dor| [siuose |

[=00 |

osew

S J0ssa00.4d 3s0d
saselfe” |po
aweu |pd
awreu oy

UBAS

2N s

T oA s UBA IS
Z2BARS
TRARS

[eweuosypex | |empsoy | [juoouns | [oox0un5 |

[orsmsypre | | eamsTspo| [Buyuoo | | yes |

gkksn
vern] [2] (=] o
an
W3
S1¥0S9
an sador
NE
S1¥0S9
s3dor
[wpvaa | [wpwshs | | uoreordde |
(=] [s] | | _
[=op | [6o | [o10.d | [dnos6 | [rediounid |

[usoy] [emou] [wsou]

a|1jo.d ue|

—IodEmcwo; [eo0| _

[a1oud o |

} _

Figure 8-2: CDS Layout for the DIl COE

July 1997

P80 COE 1&RTS: Rev 3.0

Runtime Environment

Security groups and organizations also appear in CDSunder / . : / sec. (Directories
/.:/sec/groupand/.:/sec/org respectively.)

All server binding entries are contained under / . : / h. Thereisone container for each mission-
application segment, named with the segment’s assigned directory, and one container for the COE,
with sub-containers for each COE segment.

Each segment container contains a profile entry for each service offered by the segment. This entry is
named . :/ h/ SegDi r/ servi cenane_pr of i | e and serves as the starting point for all client
binding searches.

There will be a service binding entry for each server for each host on which the server is installed. The
entry has the form
/. :1'hl SegDi r/ host nanel servi cenane.

The name of each entry matches the service name.

A gr oups container under each segment is used to store any server group entries used in the binding
search path.

An obj ect s container under each segment is used to store any object entries used to locate object
resources used in binding searches.

8.3.3 Distributed File System

Note: The DFS global cell directory structure is still being designed.
COE developers who intend to use the global cell must contact
the DIl COE Chief Engineer.

8.3.4 DCE-Related Segment Descriptors

Chapter 5 details the segment descriptor information required for DCE segments. A synopsis of the
information is presented here as an aid to locating DCE-relevant information. Refer to Chapter 5 for
detailed discussion.

The$SERVI CES keyword in theCOESer vi ces descriptor should not be necessary for DCE
applications, since endpoints are defined dynamically.

The $SERVERS keyword within theNet wor k segment descriptor shall not be used for DCE services.
Instead, use theDCESERVI CE.

The segment descriptBer m ssi ons may be used, but it is preferable to implement the application
using DCE security services.

The $DCEBOOT keyword is provided for DCE servers starteddogd.

Include a3PASSWORDS keyword in theCOESer vi ces descriptor to establish a UNIX userid for
each server principal.

Document DFS files used with t&®FSFi | es keyword.

This information is used to automatically configure, and verify, DCE CDS usage.

DIl COE I&RTS: Rev 3.0 July 1997 261

Runtime Environment

8.3.5 Server |ssues

This subsection deals with issues involved in the design and implementation of DCE server applications.

8.3.5.1 Naming

The following guidelines apply to the naming of servers, interfaces, CDS names, and operations:

* Theservice name isthe name that representsthe logical service provided by a server. In the non-DCE
world, thisnameis put in the $SERVERS keyword. The purpose of $SERVERS is so that a client does
not have to reference the actual hostname of a server. Examplesaremast er Tr k, sl aveTr k,
mast er Conms. DCE serversare not tied to a specific host and hence do not use the $SERVERS
keyword (Net wor k segment descriptor). The $DCESERVI CE keyword is used instead to list the
services offered by this segment.

« Thefollowing convention shall be used to assign service names: A segment offering asingle service
shall use names of the form SegPr ef i x_ser ver where SegPrefix is the segment’s prefix.
Segments offering multiple services shall SsgPr ef i x_ser vi ce whereservice is a meaningful
name for the service. This convention will be used in naming many DCE resources associated with a
service and will be represented in the texteag cename.

* Interface names also will be controlled to avoid duplication. The interface names shall be descriptive
of the function of the interface. Each interface shall include the segment prefix. Examples are:
MAP_| ocat i on, MAP_access, andMAP_r dacl i f for a segment (whose segment prefikié?)
offering three interfaces. Operation names become the names of remote APIs and shall also begin with
the interface prefix or a subset of it (elgpcati on_fi nd, access_read, access_updat e).
Operation names shall also be consistent with other COE requirements on naming of APIs.

DCE will automatically provide a management interface for server applications. The only management
operation that is controlled is shutdown, which can only be performédédyy. If a server wants to
restrict other management functions, the server must deliberately disable them usdaepthe
management routinedced_ser ver _di sabl e_i f() anddced_server _enable_if().

Further information on server management can be found in Chapter 8Q8RH&CE Application
Development Guide--Introduction and Style Guide (Rev 1.1).

DCE will also automatically add an interface for managing ACLs. The example inteBce dacl i f
mentioned earlier uses the ACL manager ARllacl i f. Ther dacl i f interface consists of remote
procedures called lacl _edi t and includes remote procedures to retrieve an ACL, replace an ACL,
and test whether a given client is allowed to perform a given operation.

* Names of services and interfaces need not be registered with DISA for approval. Inclusion of the
segment prefix ensures that names are unique.

The CDS directory is a haming system somewhat like a filesystem. It uses a similar convention for naming
its objects and directories. For example,

[.:/h/ JOPES/ JOPESdb_ser ver

Servers typically use CDS for storing information about the location, interface numbers, and objects (i.e.,
resources) which they offer. Use of CDS naming requires as much rigor as does file system naming.

« Every DCE server segment shall be assigned a directory structure within CDS that parallels its file
system location (e.g.,. : / h/ SegDi r whereSegDir is the segment’s assigned directory). All CDS
entries related to this segment are contained within this directory.

P82 COE I1&RTS: Rev 3.0 July 1997

Runtime Environment

In DCE, every DCE server runs under the identity of a DCE principal. Even servers offering the same
service but on different machines require a unique DCE identity in order to provide reliable authentication
and authorization. DCE principal names are directly tied to the CDS so server principal names can be
expressed as a global name or as anamerelative to a cell. The global name is considerably longer dueto
the need to unambiguoudly specify a principa regardless of the cell from which it originates. Within acell,
the principa can be named without including any cell identifiers because DCE will automatically append
the cdll information during processing.

e Theconvention for a DIl DCE server isto usethe principa name
/.l hosts/ host nanel servi cename. Each DCE principa containsinformation relating to a
UNIX account that containsitsuid. If each principa of the same service had a unique uid, control of
server file system resources would be difficult. Each server providing the same service will sharea
UNIX uid by creating principal aliases. Thisallows each server to have a unique account with its own
password, home directory, etc., yet share the same DCE principal and UNIX account.

* Therewill also be a security group created for every DCE service. Thisgroup will contain al the
principal s that represent the serversfor this service. The purpose of this group isto allow instances of a
service on different machines to trust one another. The namefor this group will beidentical to the
servicename. Therefore a segment containing multiple services will have multiple security groups. If
an application requires additional DCE groups, they will al be prefaced with the sesgment prefix.

8.3.5.2 Interface Definition

DCE application interfaces are defined using the DCE IDL defined by OSF. All interfaces areidentified
with aglobally unique identifier that ensures that clients bind to a server offering the proper interface. IDL
interfaces also allow the identification of versions of an interface. The version numbering scheme allows
clientsto bind to a server offering any compatible version. Assuming upward compatibility, versioning
allows servers to be upgraded independently of clients, and allows old clientsto continue to operate with
new servers.

e DlIl-compliant applications shall make use of version numbers and shall provide upward compatibility
between versions.

8.3.5.3 Server Registration

Serversrecord information (bindings) in CDS that identify the interface resources and server location so
that DCE clients can find the server when a client requestsits service. DCE stores information in CDS
structures in three types of records: profiles, groups, and server entries. The record name within CDS that
the client accesses can correspond to a specific server, a group of servers, or aCDS profile®® Servers
within a group are considered to be completely interchangeable, and are selected at random. Profiles allow
the selection of alternative servers based on priorities.

Registration of DCE services shall follow the following guidelines:

* The server registration information within CDS shall follow the structure shown in Figure 8-2, which
uses the mission-application segment GSORTS as an example. Each segment shall have a directory
under / . : / h corresponding to the UNIX file system directory for the segment (see Figure 8-1). For
example, if SegDir is the segment’s assigned directory, it will have a CDS entry of h/ SegDi r.
(The segment’s assigned directdBggDir, is established when the segment is registered.) Note that

% The termCDS profile refers to a CDS entry used in locating alternative instances of a service. It has no
relationship to the termrofile used elsewhere in th& RTS to identify applications and resources available
to a class of users.

DIl COE I&RTS: Rev 3.0 July 1997 263

Runtime Environment

COE-component segments are underneath / h/ COE/ Conp so their corresponding CDS entry is
/.1 h/ COE/ Conp/ SegDi r. Within the segment directory, individual server inganceswill be
registered under a directory for the host on which the server isinstalled. The name of the server entry
shall be the servicename.

* A profileentry shall be created for each service directly under the segment directory using the name
servi cenane_profile. A servicecan also use RPC groupsto collect a set of equivalent servers.
Group entries shall be placed under / . : / h/ SegDi r/ gr oups. The segment devel oper shall use the
profile entry as the starting point for binding requests within a client application. Thisisthe name that
will be addressed by clients seeking a server.

e Theserver entry directly under the segment directory will always be a CDS profile entry. The name
will havetheform ser vi cename_pr of i | e. Inthesimplest case, the profile will contain asingle
entry, pointing to the server entry for the host on which the server isactually installed. However, by
making the client address a profile entry even in this simple case, the server can be moved, or
alternative serversimplemented, with no changes to the client.

For example, in Figure 8-2, the GSORTS segment containsthree servers: ser ver 1, server 2, and
server 3. Theserver 1 softwareisingalled on host 1 and host 2, ser ver 2 isingalled only on
host 1, andser ver 3 isingalled only on host 2. Each server instanceisregistered in CDS, as shown
above, during segment installation. The CDS profileentry ser ver 1_pr of i | e will contain pointersto
the two instances of ser ver 1, with appropriate priorities depending on whether these are equivalent
servers or oneisaprime and the other abackup. Theserver2_profil eandserver3 profile
entries will point to the respective server entries. Note, however, that by simply installing anew instance of
ser ver 2 and making the proper entriesin CDS, a client will be able to locate aternative instances of

ser ver 2 with no application software changes.

e Servers may implement amore complex arrangement of CDS profiles and groups within this structure.
A gr oups directory will be created under the application’s assigned directory as welbas aat s
directory. The naming of entries undernegittoups andobj ect s is completely under the control of
the developer, within the structure above.

The DCE API supports the registration of servers at execution time by the servers. However, to reduce the
volume of changes, it is recommended that DIl applications build most of the structure in advance, lacking
only the specific endpoint information. The specific endpoint (i.e., TCP port) is supplied at runtime to the
endpoint mapper and is not stored in CDS. Building the structure in advance also allows it to be constructed
usingdcecp rather than the more complex C-language API. Installation scripts are discussed in more

detail below.

« Dll-compliant applications shall register servers within CDS during segment installation. The
exception to this will be for tactical applications that are installed on systems that are transient
members of cells.

Note: This means that the CDS registration structure is not an indicator
that a server exists. The client needs to actually check to make
sure the server isalive.

« Dll-compliant application servers shall usec_ep_r egi st er () on server startup to register the
endpoint with the endpoint mapper. This call is pagefver _i nti al i ze(), as discussed below.

The structure above is designed for the case where service is provided by servers within the local cell.
However, DCE has no restriction on the location of the server. A profile entry may point to servers in a
foreign cell. This allows a profile to be constructed such that, for example, it would look for a server first in
the local cell, then within a near-by cell, and then anywhere. Profiles can also be used to establish

P84 COE I1&RTS: Rev 3.0 July 1997

Runtime Environment

preference for servers based on other criteriaaswell, such asthe performance of the server hardware, or to
allow clientsto select servers with compatible data representations to reduce data conversion overhead.

Thefollowing isrequired for cross-cdl profiles:

* Therequired approach for accessing cross-cdll servicesisto have aprofilein each cell that references
local profiles on remote cells. The gtarting profile has the same name as the profile that is configured
into dl clients That is,

[.:1'hl SegDi rl servicenane_profile

Thelocal profileswill be similar to the profile set up for a single-cell implementation, and will point to
al serverswithin the cell. The primary profile gives priority to serversin thelocal cell beforelooking
inaforeign cdl. Thisisillustrated in Figure 8-3. Thelocal profile could also be agroup if thelocal
servers are equivalent. A profileisrequired if one server isthe master and one isa backup.

Cdll
1.:/Ih/GSORTS
GSORTS Profile host1 host2
Priorities
Y ¥ GSORTS GSORTS
@5 entry entry

A A

GSORTS local_Profile

Priorities

Cdl2
/.:/INIGSORTS
P GSORTS local_Profile
Priorities
GSORTS
°e > entry

DIl COE I&RTS: Rev 3.0 July 1997 265

Runtime Environment

Figure 8-3: Accessto Serversin Local and Foreign Cells

8.3.5.4 Server Startup

DCE servers are normally started by means outside of DCE’s control after the DCE environment is started.
DCE 1.1 introduced a facility for managing the startup and monitoring of DCE servers. This facility is
provided by thelced daemon and facilitates full security and remote control. When used in conjunction
with the client binding recommendations below, servers can be started only as needed, can be restarted in
case of failure, and can even be started along with any prerequisite processes as neegded. rioeess

runs as root and is the parent of all DCE servers. Using the configuration information that it stores, it can
start the server under any userid/group pair in any directory$MBEBOOT keyword is used to identify

DCE servers started lolced at boottime.

The server startup functialce_ser ver _regi ster () is provided in order to simplify the

development of servers. Unfortunately, not all DCE 1.1 vendors provide this API. The function is included
inthedce_server _initialize()API discussed below.

8.3.5.5 Configuration

DCE servers contain a large number of configuration attributes that are often hard-coded in the application.
The coding of these attributes makes servers hard to change or move and maintkiediti@emon

maintains an extensible server configuration database. DCE servers use this database to obtain their
configuration information. This database is secure and is remotely manageablaeld&Hestarts a server,

it establishes an environment for the server based on its configuration record and allows the server to read
additional initial information, similar to the windows NI file.

Server configuration information is maintained in CDS under a name of the form

/. :/hosts/ host nanel confi g/ srvrconf/ servi cenane.
For more information, refer to tHeCE Administration Guide.
The configuration information whiaticed currently maintains is shown in Table 8-1.
The configuration information is easily extendible by teachinglted about new configuration
attributes. Additional attributes can be defined for any DIl application as needed. Attributes will be
assigned names depending upon their scope. Attributes that are required as part of COE support shall be
named:

/. :/hosts/ host nanel confi g/ xattrschema/ COE_at tri but enane.
Attributes that are specific to a server segment shall be named:

/. :/hosts/ host nanel confi g/ xattrschena/ SegPref_attri but enane

whereSegPref is the segment’s prefix.

In the case of COE-component segments, adding an attribute requires prior approval of the DIl COE Chief
Engineer. For mission-application segments, approval is required of the cognizant DOD Chief Engineer.

» Application developers are responsible for creating configuration entries as part of their segment
installation scriptsdce_i nst al | . dcp anddce_dei nstal | . dcp shown in Figure 8-1) invoked
at installation time.

P86 COE I1&RTS: Rev 3.0 July 1997

Runtime Environment

I nformation Description

arguments command-line argumentsreguired by the server

directory the home directory in which to start the new server

gid the group identity under which the server will run

keytabs alist of keytab object UUIDs where the server storesits keys. Although alist
is permitted, only thefirst oneis used.

program the name of the server program to run

prerequisites alist of server configuration object UUIDs which must be running

principals alist of server principal names under which the server runs. Although alist
is permitted, only thefirst oneis used.

starton alist of modifiers for starting conditions (boot, explicit, failure)

uid the UNIX uid under which the server will be started

uuid a uuid which isassigned to the server object

services the DCE information about the operation provided. The following

information is defined for each operation:

annotation string describing the service

binding(s) protocol sequences which register the
service

flags modifiers affecting the service’s
mapping {disabled}

ifname the interface name

interface the interface UUID

objects a list of object UUIDs associated wit
the service

=

Table 8-1: dced Configuration Information

8.3.5.6 Initialization

If the application is started lmced, the DCE daemon will ensure that the appropriate environment
(e.g., UNIX uid, gid, home directory, and calling parameters) is established before starting the server.
The server will use théce_i nq_ser ver () API to obtain its configuration record. There is no
requirement for the server to use the configuration information, except to retrieve any relevant
extended attribute information and pass it to the initialization routines. Servers not staltedi by
must use thelced_obj ect _read() APIto obtain this information.

Every DCE server performs a set of functions in order to initialize. This includes registering one or more

groups and entries in CDS (if not already created), and creating and registering endpoints with the endpoint

mapper. In addition to these functions, a secure server must establish its identity (login), refresh its login
context, and periodically change its password.

Servers do not normally need to perform CDS registration or unregistration during server startup or
cleanup. This is not necessary because the DIl COE environment is rigorously defined and because a
client does not use the presence of CDS information as indication of server liveliness. Registration is
normally performed as part of server installation.

DIl COE I&RTS: Rev 3.0

July 1997 267

Runtime Environment

e Serversin atacticd environment may perform registration either at cell configuration time or the first
time aserver initializes.

Without using a common server initidization API, a server normally performs anywhere from six to thirty

API calls. (See the O'ReillpCE Security book for an example of the API calls required for a secure
server.) The sequence of calls is nearly identical for all servers in a well-controlled environment like DII
because the parameters are defined by the configuration record.

Notee A common server _initialize() APl is defined and
provided as part of the COE to perform these actions. This
routine initializes the server, including security, using the
server’s configuration information.

A server usng a special initialization sequence (as defined above) can retrieve its configuration information
to perform initialization. Following this guidance will allow servers to be started on demand and can be
truly configuration-less.

One of the most critical initialization functions of a server isto register endpoints with the endpoint mapper
indced. Thistoo is easily accomplished with the server_initialize API.

8.3.5.7 Security

To write a secure DCE application, besides the application code, the application developer needs to write
client code that obtains the proper authentication and forwardsit to the server. Clients are usually
authenticated by the inherited login context created after dce_| ogi n. The COE provides a unitary login
feature so that DCE login is performed as part of user login. To use authenticated RPC, a client adds a
singlecall tothe APl r pc_bi ndi ng_set _aut h_i nf o() . Clientsthat use automatic binding will need
tousethebi ndi ng_cal | out optioninthe ACFfile.

Once the client has been authenticated, the server code gets the privileges of the calling client and

determines the level of authorization possessed by the calling dient. This code is called thereference

monitor and it performs the authorization checks. The reference monitor receives the client access request

from the server, retrieves the ACL of the object requested and checks the client’s authorization against the
ACL. The DCE Security Service supports two authorization protocols that can be used with authenticated
RPC: DCE authorization and name-based authorization. The DCE authorization protocol is based in part on
the POSIX file-protection model, but is extended with ACLs. An ACL is a list of entries that specify a
privilege attribute (such as group membership) and the permissions that may be granted to principals who
possess that attribute.

e To be Dll-compliant, applications shall only use DCE authorization.

8.3.5.7.1 Authentication

Secure servers require DCE security accounts in order to participate in DCE authentication. Each account
consists of a principal, and membership in a single primary group and organization. The name of the
account is identical to its principal name. DCE security names can be as simple as

comrs_server

or hierarchical such as

host s/ host nanel mapser ver.

P88 COE I1&RTS: Rev 3.0 July 1997

Runtime Environment

e COE hosts shall use DCE principal namesthat align one for one with UNIX operator names for
interactive users. Thiswill allow the use of the integrated login application supplied with DCE. Non-
user principals associated with DIl servers shal usehost s/ host nanel ser vi cenane.

The following DCE Security Service application program interfaces can be used to perform login for anon-
interactive principal:

sec_login_setup_identity()
sec_key nmgnt get key()

set _login_validate_ identity()
sec_key mgnt free_key()
sec_login_certify identity()
sec_l ogi n_set _context ()

These functionswill be performed automatically when using the DCE-provided API,
dce_server_sec_begin().

Secure servers must store their passwords in files since they are not capable of normal interactive login.
Thesefiles are known as keytab files.

* For the DIl COE, each application segment shall useits own keytab file. Servers shall use names that
areof theform ser vi cenane. t ab. Keytab fileswill be placed in the directory
/' h/ SegDi rl dat a/ keyt ab as shown in Figure 8-1. This directory must have access permissions
set so that only the server principa can read or writetoit.

Once a server establishesitslogin context, it isresponsible for refreshing the context before it expires and
changing passwords before they can expire. The API for managing password expiration is
sec_key nmgnt rmanage_key() . Thisfunction does not return and requires a dedicated thread.

The APIsfor loginrefresh ares

sec_l ogi n_get _expiration()
sec_login_refresh_identity()
sec_key nmgnt get key()
sec_login_validate_ identity()
sec_key mgnt free_key()
sec_login_certify identity()

8.3.5.7.2 Authenticated RPC

A client program callsr pc_bi ndi ng_set _aut h_i nf o() to specify how an authenticated RPC
connection will be set up. There are three important parameters that must be provided: authentication
service, authorization service, and the protection level. Devel opers should use the following settings for
these parameters

Authentication Service. The default for DCE applicationsis dce_private, which uses private key
authentication. No other parametersare vdid for DIl DCE.

Authorization Service. An application can specify three possible values for the authorization
service: dce, name, and none. The value dce means to pass a Privilege Attribute Certificate
(PAC). This is the setting that shall be used for all DIl DCE segments.

Protection Level. DCE allows an application to specify just how much the data in an RPC should
be protected. These arene, connect, call, packet, integrity, privacy. Integrity provides an
authenticated connection between parties and ensures that messages have not been tampered with

DIl COE I&RTS: Rev 3.0 July 1997 269

Runtime Environment

in trangt. Privacy provides the highest level of protection for the RPC by encrypting the data using
Data Encryption Standard (DES). Although the SIPRNET is encrypted using Network Encryption
Standard (NES), the DES encrypting provides additional protection from packet snooping within a
site.

» Dll-compliant applications shall specify at least integrity. The privacy level should be used for
particularly sensitive information.

8.3.5.7.3 Authorization

Once the client has been authenticated, the server must make an authorization decision. The RM isthe

server code for retrieving the client's PAC. The information from the PAC will be used by the RM to make
the authorization decision. While each server can implement its own RM, DCE packages RM code in its
library. The intent is for all servers to use this same library code. This will insure that access decisions are
made correctly and uniformly.

The ACL is a key part of the Authorization facility. Applications must be capable of establishing and
managing ACLs. DCE provides a set of APIs for using ACL manadesrs @cl _*).

8.3.5.7.4 Generic Security Service API

DCE provides a method for using DCE security without rewriting applications to use DCE RPC. DCE
contains extensions to theTF RFC 1508 and1509 GSSAPI that will allow current applications to use

DCE authentication and authorization. GSSAPI DCE extensions can be easily identified since all base
GSSAPI entry points start witlpss_ while DCE GSSAPI extensions start with the prefssdce_. The

most important DCE GSSAPI extension is ¢fssdce_extract _cred_from sec_context. This

call returns the Extended PAC (EPAC) which contains the security attributes of the original client and any
intermediate servers. The server uses the EPAC to make its authorization decisions. For more information
on the DCE Security Service and the GSSAPI, see the following:

1. The Security chapters of ti@sF DCE Application Development Guide-Core Components Volume and
the OSF DCE Administration Guide-Core Components Volume (DCE Security Service only).

2. Reference pages (section 3) from @& DCE Application Devel opment Reference.
3. Reference pages (sections 5 and 8) fron0ie DCE Command Reference.

4. Chapter 8DCE Security Programming, Wei Hu, O'Reilly & Assogates, 1995.

Note: The DCE Security Service and GSSAPI do not currently make
use of Fortezza authentication or encryption. Integration of
Fortezza with DCE is under investigation.

8.3.5.8 Auditing

DCE provides an enhanced audit facility consisting of the audit daematgeleg@ control program, and

the audit logging client library. An audit daemon exists on every DCE system. Applications audit events by
sending RPCs to the audit daemon on the local system. The audit daemons write the audit records to the
audit log file, which stores all the event records so that they can be reviewed later. The audit daemon also
maintain event filters. Event filters are data structures that determine what events should be logged. Event
filters are stored in memory and in files called event selection list (ESL) files. In order to dynamically tailor
the audit process, the audit daemon exports an interface that allows the control ptogi@on to change

the event filters and expand the range of events that should be audited.

PI0 COE 1&RTS: Rev 3.0 July 1997

Runtime Environment

Thefinal process of the audit facility isthe audit-logging client library. This allows an application to send
audit records to the audit daemon. When an application makes a call to thelibrary, the library checks to see
if the event should be audited. If the event filters determine it should not be audited, no RPC is sent to the
audit daemon.

Thisrepresentsa smplistic view of how auditing takes place in DCE. More complex actions are actually
taking place including the dynamic updating of event selection lists. The most important point is that
applications need only work with the audit-logging API to audit events.

« DIl DCE servers shall not write audit information to private audit files. The ‘central trail’ shall be used
to log all audit events.

A complete list of the DCE Audit API routines can be found inQB8E DCE Application Devel opment
Reference, Volume 2.

An event is any action that takes place and is associated with a code point in the application server code.
Each event has a symbolic name as well as a 32-bit number assigned to it. Each event number is a tuple
made up of a&et-id and theevent-id. Theset-id corresponds to a set of event numbers and is assigned by
OSF to an organization. The organization manages the issuance of the event ID numbers to generate an
event number. The structure and administration of event numbers can be likened to the structure and
administration of IP addresses.

The concept of events allows each DCE implementation to establish audit events for a wide variety of
actions that may take place within applications. DCE has established a hierarchy of formats for events.

Once again, these are similar to the class structure within the administration of IP addresses. As part of the
DCE implementation, DISA will request the assignment of a Format B event number. Format B is designed
to be used by intermediate-sized organizations that need the 8 to 16 bits for the event-id. This will provide
for the greatest flexibility and growth. Events may also be logically grouped together into an event class.
This is a case where it may be more efficient to refer to several events as a single entity/class. Event classes
are assigned event class numbers by the OSF. If required, event class number will be requested from the
OSF.

8.3.5.9 Threads

DCE automatically implements threads for server applications. The use of threads can be beneficial to
allow the server to service multiple clients concurrently. The number of active threads can be controlled by
max_cal | s_exec inrpc_server_listen(), which can be set to zero if the server software is not
“thread safe.”

While the use of threads is beneficial and recommended, the following cautions are provided:

« Itis well known that threads can conflict with Ada tasking. Use threads with caution with Ada servers.

« Many COTS packages are also not “thread-safe.” Calls to databases, windowing systems, and other
routines should be done with caution from within a thread.

« Handling of fork/exec and signals is different when threads are used.

When using exceptions with threads, the application must explicitly include &iept hr ead_exc. h
header file.

DIl COE I&RTS: Rev 3.0 July 1997 271

Runtime Environment

8.3.5.10 Installation

In addition to installing software and data to system disk, server ingtallation must also establish entriesin
DCE CDS asdiscussed earlier.

e Application segment developers shal include dcecp installation/deinstall scriptsin the segment
descriptor directory. The installation script will build theregistration structurein CDS for each
interface as part of server installation. The scriptsarenamed dce_i nstal | . dcp and
dce_dei nst al I . dcp. These scripts must contain conditional statementsto ensure that some of the
entries, such asthe SegDir container under / . : / h, areonly created once for each cell. These scripts
are executed automatically by the segment installer tool during segment install/removal.

* Itisrecommended that there be a separate ser vi cenane. dcp script for each interface, to smplify
configuration and maintenance of server installation procedures. The primary dce_i nst al | . dcp
script must invoke each of the individual service scripts.

» DCEingtalation isnormally performed by theroot user logged in usingthe DCE cel | _admni n
identity. In order to reduce the exposure during instalation, DCE applicationswill beinstalled in a
two-step process. During thefirst step, the minimal set of secure operationsis performed. These
include:

1. Creating a DCE account using the principal segnent s/ SegDi r.
2. CregtingaCDSdirectory/ . :/ h/ SegDi r.

3. Setingthe ACL for /. : / h/ SegDi r to permit al functions for the principal
segnent s/ SegDi r.

4. Cresting a security group gr oup/ segnent s/ SegDi r.

5. Setting the ACL for the security directory host s/ host narme to allow the
segnent s/ SegDi r to create principals below it.

6. Allowing segnent s/ SegDi r to create one account for each service implemented by the
segment (obj ect creati on quot a).

Note: Thisfirst installation step is available as a standard utility in the
DIl COE. It is parameterized based on a set of DCE-related
descriptors.

The second phase of DCE installation is performed by the segment-provided scripts
(dce_i nstal |l . dcp, etc.) and isrun usng the account segnent s/ SegDi r. It completesthe
installation process by performing the following for each service:

1. Create a DCE principal (once per cdll), usually with the same name asthe
host s/ host nanel ser vi cenane to be used by the server.

2. Create ahinding profile for each service of the form
I.:1hl SegDirl servi cenane_profile

(once per cell) and add each server entry.

PI2 COE 1&RTS: Rev 3.0 July 1997

Runtime Environment

3. Create aserver leaf entry (once per instance)
I.:1'hl SegDi rl host nanel server nane.

4. Create server configuration entries (for each insance).
5. Create default ACLsfor any server defined objects.

6. Create security entries for the segment under appl i cat i on and gr oup.

Note: The entire installation process is automated based on information
in the segment descriptor files.

8.3.5.11 Server Exceptions

A DCE server must have proper cleanup code. Cleanup code isresponsible for graceful shutdown and
includes unregigtering with the runtime, removing the endpoint from the endpoint mapper, and killing any
security management threads.

« Servers wishing to honor a remote ‘stop’ request, must register an authorization function using
rpc_mgmt _set _aut hori zati on_f n() . This can be used to control other management
interfaces.

« Servers shall be prepared to catch signals and perform the necessary shutdown. This can be performed
by converting signals to thread cancellation and using a cleanup function
(pt hr ead_cl eanup_push) or using the exception facility to catch ihehr ead_cancel _e

condition.
comm status, fault_status op(); /[* in ACF file */
error_status_t op (args ...); /[* in IDL file */

Alternatively, routines can return status by using the return code as follows:

op([commstatus, fault_status] st) /* in ACF file */

* All Dll-compliant applications shall catch ttst GHUP andSI GTERMsignals and perform a graceful
termination. By conventior§l GHUP means to terminate as soon as practical Shit?f ERMmeans to
terminate immediately.

Note: The initialization APl is accompanied by a server termination
function so that every programmer does not need to write one.

8.3.5.12 Client-Side Libraries

When a server is being implemented as a reusable service, it is often desirable to develop a client-side
library of interface routines to isolate the client from the DCE interfaces. This is the model most often used
in commercial packages that provide a callable service. The client deals only with a well-defined call-level
interface, independent of the fact that operations are performed by a server. This also allows some library
procedures to be performed entirely at the client when there is no need to interact with the server.

e COE services may provide an API library separate from the IDL when that will improve the efficiency
or usability of the software. When a library is provided, it shall be delivered in the seghdnt’s
directory. Unless authorized by the DIl COE Chief Engineer, the library must be provided for all
supported COE hardware platforms.

DIl COE I&RTS: Rev 3.0 July 1997 273

Runtime Environment

8.3.6 Client I'ssues

This section provides guidance for client application devel opers to make use of DCE services to access
DCE sarvers.

8.3.6.1 Binding

Binding istheterm DCE usesto refer to aclient locating an appropriate server prior to performing an RPC.
Thisis another area where a DCE application writer has plenty of latitude. Binding encompasses issues
such as selection of transport protocol, selecting one or multiple servers based on load, location, or other
criteria Ideally, the binding will beresilient and deal with servers dying, stale entriesin CDS or endpoint
maps, automated remote server startup, and meeting server prerequisites. DCE also supports three methods
for binding which affect the way applications are devel oped (automatic, explicit, implicit).

» Itisrecommended that applications use the explicit binding method sinceit isthe most flexible. In
cases where preserving the APl does not permit the use of automatic binding for the client, this does
not preclude a server’s use of explicit binding. Servers should always use explicit binding so they can
obtain client identity and/or client objects.

* One precaution in using explicit binding is that the client is responsible for obtaining another binding
should the initial handle fail (i.e. the first server is unavailable). This feature is provided automatically
by the runtime wheaut omat i ¢_bi ndi ng is used.

« Automatic binding does not naturally allow for secure binding or for passing an object reference for
use in object binding. When using automatic binding, usbitimeli ng_cal | out ACF attribute to
annotate the binding for security or object purposes. This will register a call-back routine, to be
supplied by the client, that can fill in security and object information. Refer DSR&CE
Devel opers Guide - Core Components.

Note: The DIl COE provides a standard API that clients can use to
obtain a binding handle. This simplifies writing client
applications and permits the features described above to be
implemented as needed.

There are two different binding models available within DCE. Irs¢heéce model, any implementation of

a service is assumed to be able to handle any request. This is appropriate for general purpose services such
as math routines. The alternative is tesurce or object model, in which servers also identify specific

objects for which service is provided. Clients then identify both a service and an object, and DCE will bind

to a server that satisfies both requirements. For example, an OPLAN database could identify the OPLANs
that it contains, or a map server could identify the maps it can provide. A client could then request

“Connect me to a map server that has a map of Bosnia.” Different objects could also be used to distinguish
between test and “live” versions of a database. The object model can also be used to identify a “role” being
supported by a server. For example, the client could request “Connect me to a server that is supporting the
‘observer’ role.” The object model is a little more complex, but provides much greater capability.

» DIl COE client/server applications should use the resource model for binding. For the simple case
where there is currently no distinction among implementations, each server should register an object
corresponding to the server, and the clients should request this object. This establishes the structure for
greater flexibility later. It also establishes an object-oriented flavor to interfaces that may ease
transition to the use of object request broker technology in the future.

» DIl COE client applications need some means of determining the UUIDs of these objects. There are
two choices: define the object UUID values in ‘header’ files, or use CDS as an object catalog. Object
entries in CDS shall be placed underithe/ h/ SegDi r/ obj ect s directory or under another

Pi4 COE 1&RTS: Rev 3.0 July 1997

Runtime Environment

subdirectory under obj ect s (i.e, obj ect s/ Maps). Groups can be used to collect these objects (for
example, gr oups/ Maps may refer to object entriesobj ect s/ Bosni a andobj ects/ 1 raq) .

8.3.6.2 Exceptions

Exceptions are a means of handling failure conditions which occur during program execution. DCE
implements exceptions locally and remotely as aresult of an exception occurring during execution on a
server. Using exceptions requires the use of a potentially new programming style. DCE uses exceptions
internally as ameans of conveying the failure status of RPC communications-related failures. The default
handling of an exception isa program abort which isnot desirable. The choices for an application
developer are asfollows:

1. Useexceptions by including dce/ pt hr ead_exc. h and defining TRY/ ENTRY blocks around code
that may raise an exception.

2. Attempt to avoid exceptions by using theconm st at us andf aul t _st at us attributesin an ACF
file. To this end, new RPC operations should reserve use of the last parameter in each RPC as ameans
of conveying error status by doing the following:

void op (args..., error_status_ t *st); /[* in IDL file */

» DIl applications shall make provisions for handling exceptions using one or the other of these methods.
The latter method is recommended because of its language independence, but either method is

acceptable.

8.3.6.3 Security

In DCE, the client isresponsible for selecting the security protocol and level, whereas the server maintains
the choice of accepting the client’s request or rejecting it. The A1 bi ndi ng_set _aut h_i nf o()
is used to specify the client selections. The default protection level is

rpc_c_protect | evel default. The default authentication service isc_c_aut hn_def aul t .
The default authorization serviceripc_c_aut hz_dce.

» DIl COE clients shall use the DCE authorization protocol along with packet integrity. Applications
requiring additional security should justify and identify those requirements appropriately.

In order for a client to initiate a secure transaction with a server, the client must know the server’s principal
name. This information along with the security level is placed in the binding handle. In the absence of a
standard binding interface, the client can obtain the server’s principal name using

rpc_mgnt _i nq_server _princ_nane or can query the configuration record on the host whose

binding was obtained from CDS.

Note: The latter is performed automatically by the COE supplied
binding API.

8.3.6.4 Auditing

There is no difference between auditing in a client and in a server. However, auditing is almost always
performed in a server rather than in a client. Auditing can be performed by non-DCE applications, but the
user or application must perform a DCE login in order to obtain DCE identification information that is
inserted in the audit records. See subsection 8.3.5.8 for a discussion of auditing.

DIl COE I&RTS: Rev 3.0 July 1997 275

Runtime Environment

8.3.6.5 Threads

While threads are not automatically enabled for DCE clients, the DCE pthreads package is available for use
by DCE clients. The cautions mentioned under server issues apply to clients. Client application devel opers
should read more about the implications before using threads, particularly with Ada applications. Vendor

release notes should be consulted when using threads. Vendors may require the use of special compile flags
such as- D_REENTRANT or _ THREAD_ SAFE_ and may need to be linked with vendor-specific libraries.

8.3.7 Miscellaneous I nfor mation and Requir ements

Thisfinal subsection provides some remaining details for properly using DCE within the context of the DI
COE.

e The COE establishesthe CELL environment variable to contain the current cell name.
e UNIX userids shall agree one-for-one with DCE principals.

e Each UNIX group used with a DCE application shall have a matching DCE group, but not all DCE
groups must have a matching UNIX group.

* Account groups do not have a useful analog in DCE, athough organizations or groups could fill this
function.

* UNIX file permissionsare smilar to DCE ACLs, athough ACLs are much more flexible.

PI6 COE 1&RTS: Rev 3.0 July 1997

Distributed File System

8.4 Distributed File System

DFS offers some unique characteristics as aremote file service product. Some of these capabilities are

often replicated by individual applications. Using DFS can provide significant benefits to applications that
need to provide coherent file accessto a very large community. Using DFS, all sites have accessto asingle
logical file space. In GCCS 3.0 this access is provided by a NFS-to-DFS gateway machine located at each
of the GCCS stes. DFS also provides a built-in replication mechanism that can be used to provide rapid file
access and high availability. It isfully integrated within DCE and uses secure DCE-RPC as well as DCE'’s
fine-grained access control mechanisms.

Note: This section uses GCCS as an example and the guidance given is
specific to the GCCS global cell. However it is also of interest to
other DIl developers since the techniques applied to GCCS could
also be implemented for other areas.

The DFS provides a transparent, secure global file system. DFS has enormous potential for sharing files
within and among sites. DFS will be installed within a global cell that has machines at four sites world-
wide (DISA, US Transportation Command [ARSCOM], US European Command [EUCOM], and US
Pacific Command [PACOM]). This cell will provide secure, global visibility to current information using
automatic replication. All GCCS sites will share files by access to a file server within this cell. Initially,
DFS will be used for a limited number of files, but the usage will grow as experience is gained.

DFS provides the following features:

1.

Client-side caching: DFS is a file service which maintains information about a client and the client’s
state. Servers are knowledgeable about clients, files in use, and network copies. This allows clients to
maintain full disk-based copies of server files to achieve performance rivaling that of local disks. This
is accomplished using a token passing scheme. The NFS-to-DFS gateway machines will be configured
with large disk caches (dedicated storage) for caching of remote files. The probability of finding

cached data within each site, or at least within the theater, will be high and so reduce network-induced
delays.

Trangparency (POS X semantics): DFS supports nearly complete POSIX semantics for file system
access. This guarantees consistency of file access to non-replicated files across all DFS clients. For
files that are not replicated, DFS will ensure that any file changes are immediately visible to other
users of the file. Other systems with stateless implementations have far weaker semantics due to the
possibility of having multiple copies in client buffers.

Replication: DFS divides file systems into smaller hierarchies cdllegets. DFS can create replicated
read-only filesets of a given master writeable copy. Replication provides load balancing and additional
availability. A flexible scheme exists for keeping the master and read-only copies in synchronization
within selectable time intervals. All reads from the writeable fileset immediately see any changes,
while reads from a read-only replica see the change after some delay, usually about 30 minutes
depending upon the scheduled replication interval. These consistency controls allow a trade-off
between performance and coherence. In general, replication is only used for files that change
infrequently.

Note that “immediately visible” is from the perspective of the NFS-to-DFS gateway. Because clients access

the gateway using NFS, the NFS consistency semantics apply, and updates may not be immediately
seen by the clients.

Backup filesets (cloning): DFS provides the ability to create a backup of a fileset and to make this
backup available online as a read-only copy. The backup is accomplished using an efficient system of
file pointers, so that only files changed after the backup take up additional space in the file system. The

DIl COE I&RTS: Rev 3.0 July 1997 277

Distributed File System

use of backup can alow usersto recover overwritten or deleted files without administrative help and
without doubling file space requirements.

5. Use of DCE security: DFS uses DCE security to provide authenticated access and ACLs for granular
access. DFS ACLs are based on DCE ACLs, but implement a specific security modd that is much
more flexible than UNIX file permission bits. ACLs can specify the access privileges afforded to
specific users, any local user, usersin specific named security groups, users from a specific cell, users
from any external cdll, any authenticated user, and non-authenticated users.

6. Initial ACLs: In addition to specifying ACLsfor files and directories, DCE also allows a separate set of
“Initial ACLs” to be attached to a directory. These specify the ACLs that will be applied to any new
file created within the directory. In addition, “Initial Container ACLs” can be specified to identify the
ACLs for any new directories. Among other things, these can be used to allow users to create new files
and directories without allowing them to subvert the ACLs on the directory (e.g., granting public
access to files in a sensitive directory).

7. Delegation: DFS also supports delegation of DCE credentials, which can be used to protect not only
who can access a file, but also specify the means of access. For example, ACLs can pgrofinuser
to access the GEOLOC file through ®@80_OC server but preventohn from accessing the file
without using the server, and can prevent another user from accessing the file even if they use the
GEOQLOC server.

8. Administration: DFS supports advanced administrative functions such as hot backup, moving live
filesets between machines, quota controls, transactional file system, dynamic re-sizing of file systems
and the ability to control groups of files in filesets rather than in file system units.

9. Location independence/consistency of naming: All DFS files are accessed by consistent names that do
not contain any location information. For GCCS, a file could be in any of the global cell file servers, or
replicated in multiple servers. Although GCCS will use a single DFS cell, in general DFS uses CDS to
access file systems that can easily span cell boundaries. Every client system has the same file system
view regardless of the cell to which they belong.

10. Wide-area access: DFS is built on top of DCE RPC that can use TCP, UDP or other protocols.
Because of its efficiency, circuits of 56Kbps are adequate to provide wide-area access to DFS servers.

8.4.1 DFS Structure

In general, the DFS file system is a hierarchical structure starting/at theCDS directory. Files in any
cell can be addressed just by referencing the DFS filename. The structure of a DFS filename is
I...lcellnanelfslfilesystem An example of a system’s DFS directory is
/...lgccs.sml.ml/fs/usr/JOPES. The logical naming of files does not require that the files
reside in a specific server. The physical representation may have files in another location or perhaps
replicated across several file servers. As a convenience, a symboalic lirik made to represent the files
within the current cell.

Note: In GCCS 3.0, it is anticipated that there will only be a single
global cell containing the DFS file space.

One of the primary purposes of DFS is controlled sharing of information. In the C3I environment,
information sharing occurs in at least three different dimensions: within an organizational structure (e.g.,
across a single service or agency); within the unified command structure (e.g., among a CINC, JTF, and
supporting commands); and within functional groups (e.g., among operations watchteams at all sites). All
of these can be done using DCE security groups. Group ACLs may be attached to any file within a file

PI8 COE I1&RTS: Rev 3.0 July 1997

Distributed File System

structure, but it ismost easily understood and administered if the sharing requirements are explicit in the
structure. For the GCCS DFS, the file system is organized around these sharing dimensions.

8.4.2 DFS Guidance
DFS should be used for files that meet one of more of the following criteria

1. Filesthat areread-mostly (i.e., are read many more times than they are written).
2. Filesthat require high availability.

* For filesthat change frequently, there is a tradeoff between currency and the overhead of replication.
Changesto non-replicated files are visible immediately, while changes to areplicated file may not be
visible for aperiod of time. Thereplication update rate can be set by fileset, but along interval
between replication can increase the chances of accessing a stale copy.

* Filesthat are dte-specific must be placed in site-specific directories in DFS. Be cautious when
mapping an application data directory into a shared data directory if the application has any hard-coded
file names. It ispossible for one site to write the file and unintentionally change the values for all sites.

* For GCCS, DFSfileswill initially be mapped into the local NFSfile system on / GCCS. All client
machineswill mount / . . . from the NFS-to-DFS gateway machine. / GCCS will be a symboalic link to
/...lgccs.sml/fs.

» If application-specific directories are used in DFS, the segment ingtallation procedures shall create the
directories. Note that the full directory names are site-specific.

* Usesymboalic linksto map DFSfiles or directoriesinto the proper placein the local file system. All
mapping shall be done at a directory level. System devel opers are also responsible for constructing
symbolic links from the local file system to the global DFS in their installation procedures.

* Donot createasymbaliclink from/ . :/gccs.smil.m|/fs/ to/:/,anddonot usethe notation
/ : I within DFSreferences. This notation refersto the DFS within the current cell. Since dll GCCS
applications operate outside the global cell, thiswould create an ambiguous referenceiif the site
implements DFS internally in the future.

* Do not place RDBMS databases into DFS. The DFS file consistency and caching methods do not
support thelevel of sharing required by an RDBMS. It is possible to back up databases into DFS for
re-loading somewhere else.

e GCCS application servers, or even clients, may become DFS clients and access the global cell directly.
Bypassing the NFS-to-DFS gateway may result in better performance dueto local caching and better
consistency semantics through avoiding NFS.

8.4.3 Potential Usesfor DFS

Global DFS cells can be used in a variety of ways to assist operators and devel opers, including the
following:

1. Datadistribution: Many sitesare using f t p as ameans of obtaining remote files. The transparency of
NFS or DFSis much more powerful than f t p. NFSisnot well suited for wide-area access and has
serious security issues when used across sites. The originator can smply write the datainto DFS using
any software, and the user can immediately read it using the appropriate application. If the originator
changes the file, the other users can almost immediately see the change.

DIl COE I&RTS: Rev 3.0 July 1997 279

Distributed File System

2. Referencefiles: Applications frequently use reference files for maintaining information such as maps,
inventory, or flat-file databases. Thesefiles are updated by a few sites and are made available to other
sites using primitive distribution techniques. DFS also has the ability to use ‘cloning’ whereby a virtual
copy of a file is kept, but with a fraction of the storage costs. Using this feature, the global file system
could make available old and new copies trivially.

3. Securefiles: Files containing security sensitive information should not be kept in NFS file systems.
DFS is a secure alternative to NFS. Using DFS, files can be distributed and controlled at whatever
degree is necessary.

4. Mobile Personne: Operators who travel regularly to remote sites are probably using non-secure means
(i.e.,t el net) to access files such as e-mail, data files (phone lists) or documents.eBoibt and
ft p can provide access control, but in both cases the user's password is sent unencrypted across the
network. DCE provides more flexible security and the password is never exposed on the network. By
storing these files in DFS, they can be securely accessed remotely.

5. DCE configuration information: Information about site configuration such as its DCE configuration
can easily be stored in DFS. Cell backups (critical DCE databases and configuration files) can be done
remotely by writing into a global file system.

P80 COE I1&RTS: Rev 3.0 July 1997

Development Environment

8.5 Migration Recommendations

Applications must be programmed to use DCE before the application can fully benefit from the power of
DCE. It isassumed that the movement to DCE among applications will be gradual. Although not all
applications will be re-engineered to use DCE RPCsimmediately, they can till take advantage of other
DCE services using techniques described in this section.

The next subsections describe four scenarios and identify ways in which DCE services can be used in each
case. The example cases are not mutually exclusive in that an application may take advantage of several of
them. Thefirg two cases are specifically targeted at legacy applications, while the last two may be used by
legacy or newly devel oped distributed applications.

8.5.1 Casel: Application Startup

A typical application startup scenario in the DIl starts with the client workstation displaying a user desktop.

The user selects an icon or menu entry, which causes a “button script” to be executed to start a DI
application. The application may be local or remote. The desktop ensures that the user is authorized to
select the icon or menu item. In the case of an application on a remote application server, the script uses a
UNIX command such assh orr exec to start the remote server. The server application then opens a
window on the client workstation and begins a dialog with the user.

Ther sh command requires a level of mutual trust between the application server and the client. It is
possible for malicious clients to masquerade as authorized users and run applications for which they are not
authorized. This is particularly a problem for legacy applications that run under a distinguished uid, such as
JOPES (i.e., not the user’s id). Use of a simple DCE wrapper can ensure the user is authorized using strong
DCE protection.

Through the use of a transparent D@apper, the startup of DIl applications can be fully protected using
strong DCE authentication andcass controls. Instead of invoking a user application, a button-script will
invoke the wrapper and pass the name of the user application and any parameters. The wrapper will verify
that the user is authorized to use the application, then launch the application. The application receives
control just as if the script had launched it directly, so no application changes are required. In addition to
performing authentication, the wrapper can audit execution of applications.

The wrapper can be used to launch applications on the client machine or on a remote machine. In the case
of a remote application, the wrapper will operate much like the UNiXec orr sh, but will use

authenticated DCE RPC to communicate to a remote wrapper server and will use the DCE ACL model.
The remote wrapper will authenticate the user, verify that the user is authorized, then set up the application
environment before launching the application. Untikexec orr sh, the button script does not need to

specify the machine that contains the application. By proper use of the CDS binding information, the
wrapper can make a request such as “connect me to a wrapper server on a machine that has the JOPES
application.”

The wrapper approach has the advantage of allowing full security over execution of DIl applications
without having to make changes to any applications.

« This temporary approach is permissible only as an interim step for legacy applications as they migrate
to DCE. New distributed applications shall be designed as two and three-tier client/server applications
making use of RPC. New COE-component segments shall not use this approach without prior approval
of the DIl COE Chief Engineer. Mission-application developers shall not use this approach without
prior approval from the cognizant DOD Chief Engineer.

DIl COE I&RTS: Rev 3.0 July 1997 1

Development Environment

8.5.2 Case 2: Socket/ONC RPC

Some applications are distributed and use sockets or unsecured ONC RPC to exchange control and data.
Some socket applications perform highly sensitive operations, but essentially accept any request presented
to the designated endpoint. Even without converting to full DCE RPC, these applications can make use of
strong DCE authentication and access control. Socket-based communication is a so susceptible to packet
insertion attacks.

Existing applications that use sockets or RPC and desire greater security should serioudly consider
migrating to use of DCE RPC. In many cases the effort to convert to authenticated DCE RPC isnot great.
However, even if only limited application changes can be made, the use of DCE security is possible using
the new GSSAPI. With the GSSAPI, the client application obtains a user credentia, which is passed to the
server application. The server verifies the user credentia through another call to the GSSAPI.

The simplest use of the GSSAPI will get the credential once and passit only in thefirst message. This
provides some measure of security, but not as much as passing the credential in every interchange.
However the latter requires more widespread changes to the application. It also requiresthe application to
periodically refresh the credential beforeit expires.

The following sequence of callsillustrates the use of GSSAPI:
1. Clientcallsgss_init_sec_cont ext toobtain a security token to pass to the server.
2. Client passes token to the server across the revised socket or RPC.

3. Serverreceivestoken and calsgss_accept _sec_cont ext to decode the token, then gets a copy
of the session key.

If the credential isvalid, the server can convert the token (session key) to a DCE client/server, which is
used as the subject in the access control decision; otherwise, it rejects the request. The use of GSSAP! is
discussed further in subsection 8.3.5.7, Security.

* Thistemporary approach is permissible only as an interim step for legacy applications as they migrate
to DCE. New COE-component segments shall not use this approach without prior approval of the DI
COE Chief Engineer. Mission-application devel opers shall not use this approach without prior
approval from the cognizant DOD Chief Engineer.

8.5.3 Case 3: Distributed Databases

Perhaps the greatest potential use of distributed computing in the DIl isfor distributed databases, using
products such as Oracle SQL*NET. This provides some security, but requires duplicate identification of
peopl e and resources, increasing administration. It is possible to integrate database security and remote
access control with DCE security using COTS.

At least two COTS alternatives have potential for providing DCE security to remote database connections

currently using Oracle SQL*NET. Thefirst isto usethe SQL*NET DCE product as provided by Oracle.

This product provides an Oracle integration of CDS and Security into existing applications and servers. The

Oracle database uses the client’s DCE credentials for access decisions, alleviating the need for a separate
Oracle login. The product also maps DCE groups to database roles, unifying another aspect of security. The
ability to map a DCE security group membership into an Oracle role will not be available until the next
release. Database servers register in CDS and clients use CDS to locate a database server. Unfortunately,
this product is not currently available for all COE platforms.

A second approach is to use Open Horiz&uosnection product as a means of integrating existing Oracle
database clients and servers. It uses essentially the same approach as SQL*NET DCE, and product

PIl COE I&RTS: Rev 3.0 July 1997

Development Environment

availability isimmediate. It supports applications usng OCI. In addition, this product supports the de facto
standard Open Database Connectivity (ODBC) remote database connection protocol, allowing accessto a
large number of other databases and products. Its major disadvantage isthat it cannot provide DCE group
to Oraclerole mapping. It requiresthat privileged database access be granted to the Connection server. It
cannot currently be used with applications that use ProC or ProAda embedded SQL, sincethese use
undocumented interfaces, instead of standard OCI.

Note: There are no facilities to directly support either approach in the
DIl COE. Tools such as Connection are under consideration for
later COE releases. Developers may make use of these tools with
the COE if required. This subsection is provided only to describe
a potential migration approach.

8.5.4 Case4: Distributed Files

Perhaps the easest way to use the security features of DCE isthrough use of DFS. For example, the GCCS
Global DFS will allow the use of DCE access control, authentication, replication, and consistency contrals,
with little or no application impact. It reduces requirements for user-initiated FTP and polling.

DFS offers some unique characteristics as aremote file service product. Some of these capabilities are

often replicated by individual applications. Using DFS would be a significant benefit to applications that

need to provide coherent file access to a very large community. DFS a so provides a built-in replication
mechanism that can be used for software distribution. It is fully integrated within DCE and uses secure
DCE-RPC as well as DCE's fine-grained access control mechanisms. GCCS will use &8lfesvtall

GCCS sites to have access to a single logical file space. In later versions of GCCS, this access will be
provided by an NFS-to-DFS gateway machine located in each of the theaters.

The DFS provides a transparent, secure global file system. DFS has enormous potential for sharing files
within and between sites. DFS will be installed to support GCCS within a global cell that has machines at
four sites world-wide (DISA, TRANSCOM, EUCOM, and PACOM). This cell will provide secure, global
visibility to current information using automatic replication. All GCCS sites will share filesd®ga to a

file server within this cell. InitiallyDFS will be used for a limited number of files, but the usage will grow
as experience is gained.

» Developers planning to use DFS or anticipating a need for DFS for COE-component segments shall
contact the DIl COE Chief Engineer for more detailed information and guidance. Mission-application
developers shall contact the cognizant DOD Chief Engineer to ensure that such usage does not
interfere with the COE, or with other COE-based systems.

DIl COE I&RTS: Rev 3.0 July 1997 3

Development Environment

Thispageisintentionally blank.

9. Development Environment

The DIl COE imposes very few requirements on the process or tools devel opers use to design and
implement software. The COE concentrates on the end product and how it will integrate in with the overall
system. This approach provides the flexibility to allow devel opers to conform to their internal development
process requirements. However, devel opers are expected to use good software engineering practices and
development tools to ensure robust products. The purpose of this chapter isto suggest certain devel opment
practices that will reduce integration problems, and the impact of one segment on another.

Deveopers may select compilers, debuggers, linkers, editors, Computer-Aided Systems Engineering
(CASE) toals, etc. that are most suitable for their devel opment environment. The compilers and linkers
selected must be compatible with the products supplied by the hardware vendors and must not require any
special products for other devel opers to acquirein order to use the segments produced.

Bll COEI&RTS: Rev 3.0 July 1997

Coding Conventions

9.1 Coding Conventions

This section describes required coding standards for segments submitted to DISA, whether they are COE-
component segments or mission-application segmentsthat are part of a DISA COE-based system. These
standards are not intended to restrict software devel opment, and for that reason the requirements given are
brief.

There are two important points to keep in mind with respect to this chapter. Firgt, the DIl COE states
requirements for the purpose of ensuring and preserving the integrity of the runtime environment.
Therefore, the DIl COE is mostly concerned with executables that are produced and not the process used to
create them. The COE relies upon other standards (e.g., MIL-STD 2167A, MIL-STD 495, SO 9000) and
practices levied by the cognizant DOD program managers to ensure good programming practices and a
quality product. However, certain standards are required because some of the segments produced contain
APIsthat developers will useto build other segments upon.

Secondly, the DIl COE isneutral with respect to programming languages and does not stipulate what
programming language to use to write segments. Such decisions are the prerogative of the cognizant DOD
program manager. The COE must support segments written in Ada, in support of DOD palicy, and C,
because of the use of COTS products, and therefore both are addressed in this chapter. Any statementsin
this chapter, or elsewhere in the I&RTS, which appear to state a preference for one language over another
are unintentional.

Because most devel opers are using either C/C++ or Ada, COE-component segmentsthat provide APIs
shall bewritten in either C/C++ or Ada. Availability of APIsfor both C and Adais highly desirable, but
will be driven by service and agency requirements. Consult the DIl COE Chief Engineer for availability of
multi-language APIs, for requirements to produce multi-language APIsfor a particular segment, or for
support for languages other than C/C++ and Ada.

9.1.1 Language-l ndependent Conventions
The following suggestions and requirements are language independent.

* Code ddlivered to DISA shall not be compiled with debug options enabled. If available, a utility such
asthe UNIX st ri p command shall be run on executables to minimize the disk space required.

e Segments should use shared libraries where practical to reduce runtime memory requirements.
Segmentswith public APIsimplemented as shared libraries shall also be delivered as static libraries to
make debugging easier for devel opers who need to use the APIs.

» Developers may use GUI tools to build interfaces, but developer’s should select tools that are portable
across platforms. Segments built with such tools shall use resource files for window behavior rather
than embedded code, and must not require any runtime licenses unless approved by the DIl COE Chief
Engineer for COE segments or by the cognizant DOD program manager for application segments.

« Developers should run all modules through a tool suth et to detect potential coding errors prior
to compiling.

« Developers should run all modules through commercially available tools to detect as many runtime
errors as possible (e.g., “memory leaks”).

» Developers should periodically profile segments by using tools that do a runtime analysis of module
performance (% CPU utilization, number of times a function is invoked, amount of time spent in a
function, LAN loading analysis, etc.).

DIl COE I&RTS: Rev 3.0 July 1997 5

Coding Conventions

Deveopers should create atest suite for automatically exercising the segment, especially inter-segment
interfaces and APIs, and periodically run the teststo perform regression testing. A formal test plan
should be created and submitted with the segment.

Segmentswith public APIs shall be delivered with atest suite that coversall public APIs provided by
the segment.

Deveopers should use atool such asi nmake for generating mekef i | es that are as portable as
possible. If available, the POSIX.2 make utility should be used.

Deve opers should use automated tools such as CVS, RCS, or other commercially available products to
perform configuration management tasks. Segment devel opers are responsible for configuration

contral of their own products. The I&RTS does not prescribe a CM plan, but assumes the devel oper has
one as part of good programming practices.

Deveopers should periodically rebuild segments from scratch to ensure that all pieces, including data
files, are under proper configuration management control.

Devel opers should track problem reportsin an automated database. This will simplify reporting known
problems when the segment is submitted to the cognizant DOD SSA.

Developers shdl separate COTS products from mission-application software because the COTS
software may aready be availablein the DIl COE inventory.

9.1.2 Ada

Ada generally requires stipulating fewer requirements than other languages because the syntax and
semantics of the language are designed to enforce good programming practices at the compiler level. For
example, Ada enforces strong typing so that many common coding errors are caught at compile time.

Ada bindingsin particular pose specific areas of concern.

Devel opers should design software so that routines that require binding to other languages are isolated
into a small number of easily separated modules. Thiswill make maintenance of Ada bindings easier,
and make it easier to identify segments that require long-term support for Ada bindings.

Devel opers who create Ada bindings to other segments or COT S products within the COE should
submit them with their segment so that other devel opers may reuse them.

Deveopers who require Ada bindingsto COTS products within the COE (e.g., Motif, DCE) should
use commercially available bindings whenever they exist, and whenever it is economically feasible to
do so. Products are available which largely automate the process of creating Ada bindings from C
header files.

Developers shall separate submission of their ssgment and any bindings they create. The segment will
be ddlivered to operational sites while the bindingswill be distributed only to other devel opers.

Deve opers should use Adad5 as the language of choice over earlier versions of Ada.

9.1.3 C/C++

This subsection contains requirements and suggestions that are specific to programming in C or C++.

BIl COE I&RTS: Rev 3.0 July 1997

Coding Conventions

* Developers should use American National Standards Ingtitute (ANSI) C instead of Kernighan and
Ritchie C because of the strong typing capabilities of ANSI C.

e Segmentsthat have public APIswritten in C shall support ANSI C function prototypes.

e Segmentsthat have public APIs shall support linking with C++ modules. Thisis done by bracketing
function definitions with

#i fdef __cplusplus
extern "C' {
#endi f
function prototypes
#i fdef _cpl uspl us
}
#endi f

* Segmentswritten in C that have public APIs shdl handle the condition where a header fileisincluded
twice. Thisisaccomplished by bracketing the header file with #i f ndef and #endi f asfollows:

#i f ndef MYHEADER
#def i ne MYHEADER

header file decl arations

#endi f

DIl COE I&RTS: Rev 3.0 July 1997

Development Directory Structure

9.2 Development Directory Structure

Deve opers may use whatever directory structure is most appropriate for their development process. The
installation tools will enforce thelogical sructure presented in Chapter 5. However, the COE devel opment
tools alow segments under development to be located arbitrarily on the disk. For example,

VerifySeg -p /hone5/test/dev MySeg

indicates that the segment to be validated, My Seq, is located in the directory / horme5/ t est / dev.
Similarly,

Testlnstall -p /honme5/test/dev MySeg
allows the segment to be temporarily installed from this directory for testing and debugging.

Figure 9-1 shows an example segment directory structure. It has the advantage that it separates public and
private code into different subdirectories. MySeg/ | i b contains public libraries provided by the segment,
while MySeg/ i ncl ude contains public header (C/C++) or package definition (Ada) files The

src/ Pri vLi b subdirectory should contain library modules that are private to the segment. Similarly, the
subdirectory sr ¢/ Pri vl ncl ude containsinterface files that are private to the segment.

MySeg
Scripts SegDescrip data bin src include lib
Privinclude PrivLib

Figure 9-1: Example Development Directory Structure

Thisdirectory structure is not mandatory, except when source code is delivered to DISA; otherwise, it
represents only one recommended approach. When source code is delivered to DISA, is shall bein the
src,incl ude,andl i b directoriesas appropriate.

An advantage of structuring directories as shown in Figure 9-1 isthat ddlivering software to other
developers meansthat only one directory must be deleted: the sr ¢ directory. Ddlivering the software to an
operational site meansthat only three directories need to be deleted: i ncl ude, | i b (unless shared
libraries are being used), and sr c. It isa smple matter to create automated scripts that can generate tapes
for both types of deliveries. An additional benefit isthat public and privatefiles are separated in the
directory structure for easier management and distribution.

BIl COE I&RTS: Rev 3.0 July 1997

Separ ating Out the Development Environment

9.3 Separating Out the Development Envir onment

The COE requiresthat a strict separation be maintained between the runtime environment and the

development environment. Thisistrueregardless of the target platform operating system (e.g., NT, UNIX).

For the NT® world, most development tools are structured in such a way that the devel opment environment

is self-contained in an integrated environment that is accessible from a GUI. For example, both Microsoft

and Borland provide an integrated devel opment environment for C++ that provides icon and menu access

to compilers, linkers, editors, and other development tools. Both products provide a “directory browser” for
identifying the location of source code and libraries, and the target directory for object code and
executables. Moreover, they provide an interface for defining parameters such as compiler flags and
preserve the settings and all other build-related information in a “project file.”

For UNIX, however, integrated development environments are less common place. The next subsection
describes an approach for preserving the separation of development and runtime UNIX environments
through the use of scripts. The concept is to put all runtime information into one script, and all development
information in a separate script. While the approach between NT and UNIX is considerably different, the
COE stipulates a fundamental requirement to preserve a separation between the runtime and development
environment. Developers shall preserve this separation regardless of the target operating system
environment.

9.3.1 UNIX Development Scripts

In the UNIX environment, it is often convenient to locate development scripts in the same subdirectory as
the runtime scripts (e.g., subdirect@yr i pt s). The recommended convention is to name development
scripts with a dev extension to distinguish them from runtime environment scripts. That i me

extension camot be used since this has a special meaning within the COE as explained in Chapter 5.

Developers may define environment variables for locating source code directories, compilers, tools, and
libraries. In addition, aliases can be defined as shortcuts for frequently executed commands. None of these

examples are allowed in the runtime environment and hence must be placed in a development script such as
.cshrc. dev.

9.3.2 NT® and UNIX Recommendations

The following suggestions are made:

» Define environment variables relativegegpr ef i x_HOVE wheresegprefix is the segment prefix.
This allows segments to be easily relocated on the disk. (This suggestion is applicable to both UNIX
and NT.)

« Use environment variables to define where to place libraries and executables. (UNIX only. For NT, use
facilities provided by the development tools for locating libraries and executables.)

* Extend the path environment variable through concatenation - that is

set path = ($path $TOOLS)

% The DII COE for NT is presently available only on PC platforms. Comments in this chapter should be
understood in the context of Windows NT for PC-based platforms, even though the NT operating system is
available on other commercial platforms. DIl COE support for non-PC platforms is dependent upon
g?quirements from the DIl COE community.

ibid.

DIl COE I&RTS: Rev 3.0 July 1997 9

Separ ating Out the Development Environment

where $TOOLS isthe location of the COE development tools (e.g., / h/ TOOLS). (UNIX only. For NT,
use facilities provided by the development tools for locating tools.)

* Usethe same script for all supported platforms through use of the environment variables
MACHI NE_CPU and MACHI NE_GS. (UNIX only. For NT, use facilities provided by the devel opment
toolsfor creating project files that allow multi-platform development support.)

9.3.3 Test Account Group

COE-component segment devel opers typically create serversthat will be used by other segmentsin the
operational system. However, the devel opers and the SSA need to be able to test the COE-component
segments when there may not be avail able any mission-application segments, or even an account group
segment, that will launch the servers and exercise the AP interfaces.

To aid the SSA and other segment devel opers, it isrecommended that COE-component segment devel opers
create and deliver with the segment the following:

* A test account group segment. This segment should establish the environment that the COE segment
is expected to run within and contain details for how to correctly launch the services. This provides a
way for the SSA to test the delivered segmentsand it provides system engineers and designers an
example of how the segment was intended to be used.

* A "Run” script . Chapter 5 indicates that account group segments must contain an executable that will
launch the application. Thetest segment should also contain such an executable. This encapsulatesin
one place the information required to properly establish the runtime environment to launch the server
and it aso identifies the sequence and command-line parameters, if any, required to launch the
Services.

* Documentation The test segment and “Run” script should be documented to assist the system
integrator, potential system designers, and the SSA.

The test segment and “Run” script should be packaged and delivered separately from the actual COE-
component segment. This will ensure that the test segment does not inadvertently get delivered to an
operational site, or get confused with account group segments that are intended to be part of the end
system.

D0l COE 1&RTS: Rev 3.0 July 1997

Private and Public Files

9.4 Private and Public Files

The software engineering principles of data abstraction and data hiding are important in designing
segments. Data abstraction refers to the process of abstracting structures so that subscriber segments need
not know low-level details of how datais physically organized. Data hiding refersto hiding data elements
that subscriber segments do not need or are not authorized to access directly. Proper implementation of
these two design principles prevents segments from affecting each other through inadvertent side effects
and isolates one segment from changesin another.

It isasoimportant to hide low-level functions and only provide access to segment functionality through a
carefully controlled interface, the API. It is neither feasible nor desirable to make all functionsin a segment
available due to the sheer number of functions involved and because changing a function that isbeing used
directly by another developer may have significant impact.

These concepts are implemented in Ada through the package congtruct. C, however, does not contain an
equivalent capability. The closest approximation in C isthe static directive that makes afunction visible
only within the scope of the file containing the function definition. To compensate for structural
inadequaciesin C, developers must segregate software into public and private files, and into public and
private directories. Since header files (e.g., . h files) are used to define the interface to C functions, the
concept is that header files should be segregated into public and private files while public and private
directories are used to provide the same concept for libraries. Moreover, segregation into distinct
directories makes it easier to enforce the separation.

DIl COE I&RTS: Rev 3.0 July 1997 11

COE Online Services

9.5 Developer’s Toolkit

The Developer’s Toolkit contains the components necessary for creating segments that use COE
components. The toolkit does not need to be in segment format (it is not installed at operational sites), but it
is a set of files and directories that may be downloaded electronically from the online library. Developer’s
may also contact the DIl COE Configuration Management Department to receive the toolkit on magnetic
media in relative “tar” format.

The Developer’s Toolkit is distributed separately from the target COE-based system. However,

components from the operational system (COE-component segments, shared libraries, etc.) are required for
development. These may be obtained electronically from the online library, or on magnetic media from the
DIl COE Configuration Management Department. Classified or very large components will be distributed

to developers via magnetic media. The toolkit does not duplicate any components available in the runtime
system because this would create configuration management problems in ensuring that developers do not
receive two different versions of the same module.

As distributed, the toolkit contains the following:

e APl libraries and object code

e C header files for public APIs written in C

* Ada package definitions for APIs written in Ada
e Ada bindings for selected APIs

« APl documentation in HTML form&t

e APl documentation in UNIX man page format

* COE development tools (see Appendix C)

* Conventions for creating APIs

The toolkit doesiot contain any products that require a license (compilers, editors, RDBMS, etc.). It is the
developer’s responsibility to acquire these items as needed.

Developers may install the toolkit on the disk in whatever directories are desired. The standard location for
toolkit components is:

C public header files / h/ CCE/ i ncl ude
Ada public package definitions / h/ CCE/ i ncl ude
public libraries /h/COE/lib
executables /h/ TOOLS/ bi n
UNIX man pages /h/ TOOLS/ man
HTML documentation / h/ TOOLS/ HTML

Certain tools from Appendix C are useful for both the development environment and the runtime
environment. These tools are delivered with the operational system and are locatéd UQMEY bi n.

Developers should includeh/ TOOLS/ bi n in thepat h environment variable for their development
environment/ h/ TOOLS/ man should also be included in the search path for UNIX man pages. The web
browser should be set to find HTML documentation uddgrTOOLS/ HTM_.

Developers are encouraged to submit tools to the COE community for inclusion in the developer’s toolkit.
All tools submitted must be license and royalty free, and must include a man page for online

%2 Documentation is delivered in only one format. The goal is to use HTML for programmer documentation
because this is suitable for both NT and UNIX platforms. However, some documentation is still in UNIX
man page format.

2l COE I1&RTS: Rev 3.0 July 1997

COE Online Services

documentation. Devel opers wishing to rel ease source code for their contributed tools may do so and the
source code for thetool will be organized under the/ h/ TOOLS/ sr ¢ directory.

DIl COE I&RTS: Rev 3.0 July 1997

13

COE Online Services

Thispageisintentionally blank.

10. COE Online Services
The DIl COE provides a comprehensive set of servicesto assist in

e Creating segments,

» tracking and managing submitted segments,

» tracking system trouble reports,

« distributing technical information and documents,

e communicating project-related information,

e distributing COE products to segment developers, and
e distributing COE-based systems to operational sites.

These services are provided by an SDMS and a COE Information Server (CINFO). The SDMSisan online
software repository for receiving submitted segments, and for distributing them electronically, and for
synchronizing repositories at mirror sites. The CINFO is used to disseminate project-related information
including schedules and documentation. With appropriate restrictions, SDMS and CINFO services are
available to segment devel opers, program managers, site administrators, services and agencies, and
program sponsors.

Several network technologies are used to implement COE online services.

World-Wide-Web (WMWW) Access to catalogs, segments, plans, documents, etc. is
provided viaa WWW server. It isthe standard interface to
both SDMS and CINFO. Users will require a Hypertext
Markup Language (HTML) browser such as Mosaic,
Netscape, or Microsoft’'s Internet Explorer to access the
WWW server.

Internet News An Internet news server is used to manage newsgroups about
the COE and COE-based systems. Such groups include
technical discussions related to COE architecture, available
tools, and standards.

anonymous ftp Anonymous ftp servers are used to provide rapid
dissemination of segments to operational sites. Sites may
receive segments in either a “push” or a “pull” mode.

4l COE 1&RTS: Rev 3.0 July 1997

COE Online Services

€electronic mail

Automatic notification of key events (segment in test, segment
ready for distribution, etc.) trouble reports, and meeting
notices is done via e ectronic mail.

DIl COE I&RTS: Rev 3.0

July 1997 15

COE Online Services

This approach provides several benefits to COE-based systems:

Facilitates software and data reuse (e.g., segment reuse)

| dentifies available segments through a segment catal og

Provides online configuration management

Automates several aspects of the integration process

Provides electronic notification of segment status to management
Improves communications between segment devel opers
Provides a centralized electronic distribution facility

Separates classified or sensitive information from information suitable for general dissemination

Appendix D provides more information on how to access the COE online services described in this chapter.

D81 COE I1&RTS: Rev 3.0 July 1997

Security Features

10.1 Security Features

COE online services are separated into a classified and an unclassified system. The systems, whether
classified or unclassified, use a secure operating system, database, and network software. Auditing is
enabled to record system access and to record other security-relevant operations. Additional security
features areimplemented to

* ensure software integrity,
e prevent interception or eavesdropping on data transmissions, and
e ensure separation of classified versus unclassified information, segments, and data.

The classified and unclassified components reside on physically distinct computer systems separated by an
air gap. Theunclassified system is available via Internet and is generally available to any interested party.
The classified system is accessible only via SIPRNET, and only to authorized users.

Unauthorized access to the system is prevented through a layered approach. Firewalls are implemented as
thefirg layer of protection. Securerouters provide IP address filtering and port access to limit access only
to authorized platforms. Features are also implemented to restrict services that can be requested or granted
to further protect the system from unauthorized access.

User authentication is based on a combination of a manual registration process, an authorized | P address,
and password protection. Passwords are required to initially 1og onto the system, but are further required to
log into the software repository and to access browser services.

Public key encryption is used to protect segmentsin the software repository. Encryption and compression
are both used to protect data during transmission over the network to prevent unauthorized modifications.

Certain information, such as system problem reports or project status, is not necessarily classified.
However, such information is sill sensitive and needs to be controlled. Public and private views are
implemented to provide this measure of protection.

Further discussion of security featuresis beyond the scope of this document.

DIl COE I&RTS: Rev 3.0 July 1997 17

Softwar e Digtribution M anagement System

10.2 Software Distribution M anagement System

SDMS isthe DIl software repository, and it is used to store and disseminate COE and COE-related

products. SDMSis accessible only from SIPRNET. Segments, technical documentation, APIs, the COE
developer’s toolkit, and segment abstracts are also stored in the repository, but as appropriate, they are
mirrored on the unclassified Internet set for access by the general community.

Segments can be sent electronically to the DISA OSF througtutira t program. Segments may also be

sent to the OSF via tape. Tape is necessary to accommodate large segments (such as database segments) or
classified segments. Electronically transmitted segments are compressed to reduce transmission time, and
encrypted to provide security. Online software at the OSF receives the segment and places it into a

protected directory until it is tested for conformance and to ensure that it is an authorized segment. Only

then is the segment actually checked into the SDMS. This process is described in more detail in Chapter 3.

Segments are retrieved from the SDMS in a similar way. As segments are approved for release, they are
placed in a protected directory that is accessible via an anonymous ftp, or through a network browser.

Developers who desire SDMS access must request access from DISA through their appropriate government
program sponsor. Those without SIPRNET access may request COE products, such as the developer’s
toolkit, on tape media.

Distribution of COE-based systems to operational sites also uses the SDMS. Site administrators must
request access from DISA through their appropriate government channels.

L8l COE I1&RTS: Rev 3.0 July 1997

COE Infor mation Server

10.3 COE Information Server

The COE information server is used to disseminate information to the at-large COE community. The
information server provides the following types of information:

e general product information
* meeting minutes

* briefings

e segment descriptions

e usar documentation

e programmatic documentation
e problem reports.

An unclassified WWW home page available via the Internet provides access only to non-sensitive general
information from these categories. The classified WWW home pageisavailable only on SIPRNET and
includes alist of al available segments, segment version and patch information, information on upcoming
system changes, and special installation instructions.

All information posted on the information server requires prior approval by the DISA Engineering Office.
Information to be posted must be submitted to the engineering office by the appropriate service/agency
representative.

DIl COE I&RTS: Rev 3.0 July 1997 19

FOREWORD

10.4 Mirror Sites

Project managersfor COE-based systems will often have their own SSA and procedures for configuration
management, devel opment, and project communication. Services and government agencies may wish to
implement the COE online services at their own selected sites to more directly support their program. Such
SSA sitesare called mirror sites. A mirror site contains a copy of the SDMS that is updated on a periodic
basis (e.g., daily, weekly).

Mirror sites have all of the same capabilities asthe central DISA site, subject to threerestrictions:

1. Mirror sitesarenot allowed to submit COE-component segments to amirror sSite SDMS. This ensures
centralized configuration management of the COE through the DIl COE SSA.

2. Mission-area segmentsthat are part of a COE-based system being devel oped in cooperation with DISA
(e.g., GCCS, GCSS) may be provisionally submitted to amirror site SDMS.

3. Segmentswith APIsfor which amirror dteis responsible may be provisionally submitted to the mirror
site SDMS.

Submission of COE-component segments or mission-application segments for DISA COE-based systemsis
considered provisiona until formally accepted by the DIl COE SSA. Theserestrictionsarerequired in
order to avoid configuration management problems.

DIl COE I&RTS: Rev 3.0 July 1997 t

